57 research outputs found

    Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    Get PDF
    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres

    Laboratory measurements of microwave absorption from gaseous atmospheric constituents under conditions for the outer planets

    Get PDF
    Quite often the interpretive work on the microwave and millimeter-wave absorption profiles, which are inferred from radio occultation measurements or radio astronomical observations of the outer planets, employs theoretically-derived absorption coefficients to account for contributions to the observed opacity from gaseous constituents. Variations of the actual absorption coefficients from those which are theoretically derived, especially under the environmental conditions characteristic of the outer planets, can result in significant errors in the inferred abundances of the absorbing constituents. The recognition of the need to make laboratory measurements of the absorptivity of gases such as NH3, CH4, and H2O in a predominantly H2 atmosphere, under temperature and pressure conditions simulating the outer planets' atmospheres, and at wavelengths corresponding to both radio occultation and radio astronomical observations, has led to the development of a facility capable of making such measurements at Georgia Tech. The laboratory measurement system, the measurement techniques, and the proposed experimental regimen for Winter 1985 are described

    Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    Get PDF
    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted

    Millimeter-wave spectra of the Jovian planets

    Get PDF
    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets

    Pioneer Venus Radio Occulation (ORO) data reduction : profiles of 13 cm. absorptivity

    Get PDF
    Issued as Quarterly progress reports, nos. 2,6,8,9, Semiannual status reports, nos. [1],3,4, Annual report, and Final technical report, Project no. E-21-F1

    Study and interpretation of the millimeter-wave spectrum of Venus

    Get PDF
    The effects of the Venus atmospheric constituents on its millimeter wavelength emission are investigated. Specifically, this research describes the methodology and the results of laboratory measurements which are used to calculate the opacity of some of the major absorbers in the Venus atmosphere. The pressure broadened absorption of gaseous SO2/CO2 and gaseous H2SO4/CO2 has been measured at millimeter wavelengths. We have also developed new formalisms for computing the absorptivities of these gases based on our laboratory work. The complex dielectric constant of liquid sulfuric acid has been measured and the expected opacity from the liquid sulfuric acid cloud layer found in the atmosphere of Venus has been evaluated. The partial pressure of gaseous H2SO4 has been measured which results in a more accurate estimate of the dissociation factor of H2SO4. A radiative transfer model has been developed in order to understand how each atmospheric constituent affects the millimeter wave emissions from Venus. Our results from the radiative transfer model are compared with recent observations of the micro-wave and millimeter wave emissions from Venus. Our main conclusion from this work is that gaseous H2SO4 is the most likely cause of the variation in the observed emission from Venus at 112 GHz

    Understanding the variation in the millimeter-wave emission of Venus

    Get PDF
    Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus

    Pioneer-Venus radio occultation (ORO) data reduction: Profiles of 13 cm absorptivity

    Get PDF
    In order to characterize possible variations in the abundance and distribution of subcloud sulfuric acid vapor, 13 cm radio occultation signals from 23 orbits that occurred in late 1986 and 1987 (Season 10) and 7 orbits that occurred in 1979 (Season 1) were processed. The data were inverted via inverse Abel transform to produce 13 cm absorptivity profiles. Pressure and temperature profiles obtained with the Pioneer-Venus night probe and the northern probe were used along with the absorptivity profiles to infer upper limits for vertical profiles of the abundance of gaseous H2SO4. In addition to inverting the data, error bars were placed on the absorptivity profiles and H2SO4 abundance profiles using the standard propagation of errors. These error bars were developed by considering the effects of statistical errors only. The profiles show a distinct pattern with regard to latitude which is consistent with latitude variations observed in data obtained during the occultation seasons nos. 1 and 2. However, when compared with the earlier data, the recent occultation studies suggest that the amount of sulfuric acid vapor occurring at and below the main cloud layer may have decreased between early 1979 and late 1986

    Search for extraterrestrial intelligence/high resolution microwave survey team member

    Get PDF
    This semiannual status report describes activities conducted by the Principal Investigator during the first half of this third year of the NASA High Resolution Microwave Survey (HRMS) Investigator Working Group (IWG). As a (HRMS) Team Member with primary interest in the Sky Survey activity, this investigator attended IWG meetings at NASA/Ames and U.C.-Santa Cruz in Apr. and Aug. 1992, and has traveled independently to NRAO/Kitt Peak, Arizona (April 1993) and Woodbury, Georgia (July 1993). During the July 1993 visit to the Georgia Tech Research Corporation/Woodbury Research Facility, an experiment was conducted to study the effects of interference from C-band (3.7 - 4.2 GHz) geostationary spacecraft on the Sky Survey operation in that band. At the first IWG meeting in April of this year, results of a SETI observation conducted at the 203 GHz positronium hyperfine resonance using the NRAO facility at Kitt Peak, AZ, were presented, as well as updates on the development of the spaceborne RFI data bases developed for the project. At the second meeting, results of the study of interference from C-band geostationary spacecraft were presented. Likewise, a presentation was made at the accompanying 1993 Bioastronomy Symposium describing the SETI observation at the positronium hyperfine resonance

    Search for extraterrestrial intelligence/High Resolution Microwave Survey team member

    Get PDF
    This final report summarizes activities conducted during the three years of the NASA High Resolution Microwave Survey (HRMS). With primary interest in the Sky Survey activity, the principal investigator attended nine Working Group meetings and traveled independently to conduct experiments or present results at other meetings. The major activity involved evaluating the effects of spaceborne radio frequency interference (RFI) on both the SETI sky survey and targeted search. The development of a database of all unclassified earth or biting and deep space transmitters, along with accompanying search software, was a key accomplishment. The software provides information about potential sources of interference and gives complete information regarding the frequencies, positions and levels of interference generated by the spacecraft. A complete description of this search system (called HRS, or HRMS RFI Search) is provided. Other accomplishments include development of a 32,000 channel Fast-Fourier-Transform Spectrum analyzer for use in studies of interference from satellites and in a 1.4 mm SETI observational study. The latest revision of HRS has now been distributed to the extended radio astronomy and SETI community
    corecore