20 research outputs found

    Online)

    No full text
    Summary Pancreatic neuroendocrine tumors represent a small percentage of all pancreatic tumors (1.3%) but their incidence is rising. Prior to 2011, the only approved agent for unresectable disease was streptozicin (often used in combination with doxorubicin) but the efficacy of this drug is in question and there had not been any new drugs approved for this disease in more than 20 years. Recently there has been new excitement for the treatment of advanced neuroendocrine tumors including those of the pancreas (pNET) with FDA approval of 2 new agents in 2011. One of these agents was everolimus, an mTOR inhibitor, which was approved on the basis of a landmark phase III study (RADIANT-3). At the 2011 American Society of Clinical Oncology (ASCO) Annual Meeting, several abstracts were presented reviewing novel agents in the treatment of advanced NET. Three abstracts looked at characteristics of patients treated on the RADIANT-3 study and looked at the role of prior chemotherapy use (Abstract #4103), somatostatin analog use (Abstract #4010), and updated safety data (Abstract #4009) from this trial. Additionally, an abstract was presented (Abstract 4008) looking at updated data from the other targeted agent approved for advanced pNET, sunitinib, a multi-tyrosine kinase inhibitor, which demonstrated improvement in progression-free survival compared to placebo. Novel agents were also presented, including a phase II trial looking at the combination of sorafenib and bevacizumab (Abstract #4113), and a phase I trial looking at a novel somatostatin analog, pasireotide, in combination with everolimus (Abstract #4120) The authors review and summarize these abstracts in this article

    Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes

    No full text
    © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ. Objective Pancreatic ductal adenocarcinoma (PDA) has among the highest stromal fractions of any cancer and this has complicated attempts at expression-based molecular classification. The goal of this work is to profile purified samples of human PDA epithelium and stroma and examine their respective contributions to gene expression in bulk PDA samples. Design We used laser capture microdissection (LCM) and RNA sequencing to profile the expression of 60 matched pairs of human PDA malignant epithelium and stroma samples. We then used these data to train a computational model that allowed us to infer tissue composition and generate virtual compartment-specific expression profiles from bulk gene expression cohorts. Results Our analysis found significant variation in the tissue composition of pancreatic tumours from different public cohorts. Computational removal of stromal gene expression resulted in the reclassification of some tumours, reconciling functional differences between different cohorts. Furthermore, we established a novel classification signature from a total of 110 purified human PDA stroma samples, finding two groups that differ in the extracellular matrix-associated and immune-associated processes. Lastly, a systematic evaluation of cross-compartment subtypes spanning four patient cohorts indicated partial dependence between epithelial and stromal molecular subtypes. Conclusion Our findings add clarity to the nature and number of molecular subtypes in PDA, expand our understanding of global transcriptional programmes in the stroma and harmonise the results of molecular subtyping efforts across independent cohorts

    Image_5_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_3_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_4_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_7_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_6_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_2_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_8_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p

    Image_1_Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies.tif

    No full text
    Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.</p
    corecore