34 research outputs found

    Bench-Stable Transfer Reagent Facilitates the Generation of Trifluoromethyl-sulfonimidamides

    No full text
    Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF<sub>3</sub>-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF<sub>3</sub>-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications

    Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors

    No full text
    CBP (CREB (cAMP responsive element binding protein) binding protein (CREBBP)) and P300 (adenovirus E1A-associated 300 kDa protein) are two closely related histone acetyltransferases (HATs) that play a key role in the regulation of gene transcription. Both proteins contain a bromodomain flanking the HAT catalytic domain that is important for the targeting of CBP/P300 to chromatin and which offeres an opportunity for the development of protein–protein interaction inhibitors. Here we present the development of CBP/P300 bromodomain inhibitors with 2,3,4,5-tetrahydro-1,4-benzoxazepine backbone, an <i>N</i>-acetyl-lysine mimetic scaffold that led to the recent development of the chemical probe I-CBP112. We present comprehensive SAR of this inhibitor class as well as demonstration of cellular on target activity of the most potent and selective inhibitor TPOP146, which showed 134 nM affinity for CBP with excellent selectivity over other bromodomains

    Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors

    No full text
    CBP (CREB (cAMP responsive element binding protein) binding protein (CREBBP)) and P300 (adenovirus E1A-associated 300 kDa protein) are two closely related histone acetyltransferases (HATs) that play a key role in the regulation of gene transcription. Both proteins contain a bromodomain flanking the HAT catalytic domain that is important for the targeting of CBP/P300 to chromatin and which offeres an opportunity for the development of protein–protein interaction inhibitors. Here we present the development of CBP/P300 bromodomain inhibitors with 2,3,4,5-tetrahydro-1,4-benzoxazepine backbone, an <i>N</i>-acetyl-lysine mimetic scaffold that led to the recent development of the chemical probe I-CBP112. We present comprehensive SAR of this inhibitor class as well as demonstration of cellular on target activity of the most potent and selective inhibitor TPOP146, which showed 134 nM affinity for CBP with excellent selectivity over other bromodomains

    Structure-Based Design of Highly Selective Inhibitors of the CREB Binding Protein Bromodomain

    No full text
    Chemical probes are required for preclinical target validation to interrogate novel biological targets and pathways. Selective inhibitors of the CREB binding protein (CREBBP)/EP300 bromodomains are required to facilitate the elucidation of biology associated with these important epigenetic targets. Medicinal chemistry optimization that paid particular attention to physiochemical properties delivered chemical probes with desirable potency, selectivity, and permeability attributes. An important feature of the optimization process was the successful application of rational structure-based drug design to address bromodomain selectivity issues (particularly against the structurally related BRD4 protein)

    Identification and Development of 2,3-Dihydropyrrolo[1,2‑<i>a</i>]quinazolin-5(1<i>H</i>)‑one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex

    No full text
    Bromodomain containing proteins PB1, SMARCA4, and SMARCA2 are important components of SWI/SNF chromatin remodeling complexes. We identified bromodomain inhibitors that target these proteins and display unusual binding modes involving water displacement from the KAc binding site. The best compound binds the fifth bromodomain of PB1 with a <i>K</i><sub>D</sub> of 124 nM, SMARCA2B and SMARCA4 with <i>K</i><sub>D</sub> values of 262 and 417 nM, respectively, and displays excellent selectivity over bromodomains other than PB1, SMARCA2, and SMARCA4

    Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins

    Get PDF
    The bromodomain and plant homeodomain finger-containing (BRPF) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Here, we describe <b>NI-57</b> (<b>16</b>) as new pan-BRPF chemical probe of the bromodomain (BRD) of the BRPFs. Inhibitor <b>16</b> preferentially bound the BRD of BRPF1 and BRPF2 over BRPF3, whereas binding to BRD9 was weaker. Compound <b>16</b> has excellent selectivity over nonclass IV BRD proteins. Target engagement of BRPF1B and BRPF2 with <b>16</b> was demonstrated in nanoBRET and FRAP assays. The binding of <b>16</b> to BRPF1B was rationalized through an X-ray cocrystal structure determination, which showed a flipped binding orientation when compared to previous structures. We report studies that show <b>16</b> has functional activity in cellular assays by modulation of the phenotype at low micromolar concentrations in both cancer and inflammatory models. Pharmacokinetic data for <b>16</b> was generated in mouse with single dose administration showing favorable oral bioavailabilit

    Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF

    No full text
    TRIM24 is a transcriptional regulator as well as an E3 ubiquitin ligase. It is overexpressed in diverse tumors, and high expression levels have been linked to poor prognosis in breast cancer patients. TRIM24 contains a PHD/bromodomain offering the opportunity to develop protein interaction inhibitors that target this protein interaction module. Here we identified potent acetyl-lysine mimetic benzimidazolones TRIM24 bromodomain inhibitors. The best compound of this series is a selective BRPF1B/TRIM24 dual inhibitor that bound with a <i>K</i><sub>D</sub> of 137 and 222 nM, respectively, but exerted good selectivity over other bromodomains. Cellular activity of the inhibitor was demonstrated using FRAP assays as well as cell viability data

    Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies

    Get PDF
    The BRPF (bromodomain and PHD finger-containing) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Evaluation of the BRPF family as a potential drug target is at an early stage although there is an emerging understanding of a role in acute myeloid leukemia (AML). We report the optimization of fragment hit <b>5b</b> to <b>13-d</b> as a biased, potent inhibitor of the BRD of the BRPFs with excellent selectivity over nonclass IV BRD proteins. Evaluation of <b>13-d</b> in a panel of cancer cell lines showed a selective inhibition of proliferation of a subset of AML lines. Pharmacokinetic studies established that <b>13-d</b> had properties compatible with oral dosing in mouse models of disease (<i>F</i><sub>po</sub> 49%). We propose that <b>NI-42</b> (<b>13-d</b>) is a new chemical probe for the BRPFs suitable for cellular and in vivo studies to explore the fundamental biology of these proteins

    [1,2,4]Triazolo[4,3‑<i>a</i>]phthalazines: Inhibitors of Diverse Bromodomains

    No full text
    Bromodomains are gaining increasing interest as drug targets. Commercially sourced and de novo synthesized substituted [1,2,4]­triazolo­[4,3-<i>a</i>]­phthalazines are potent inhibitors of both the BET bromodomains such as BRD4 as well as bromodomains outside the BET family such as BRD9, CECR2, and CREBBP. This new series of compounds is the first example of submicromolar inhibitors of bromodomains outside the BET subfamily. Representative compounds are active in cells exhibiting potent cellular inhibition activity in a FRAP model of CREBBP and chromatin association. The compounds described are valuable starting points for discovery of selective bromodomain inhibitors and inhibitors with mixed bromodomain pharmacology

    Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands

    No full text
    The bromodomain protein module, which binds to acetylated lysine, is emerging as an important epigenetic therapeutic target. We report the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency. X-ray crystal structures of the most potent compounds reveal key interactions required for high affinity at BRD4(1). Cellular studies demonstrate that the phenol and acetate derivatives of the lead compounds showed strong antiproliferative effects on MV4;11 acute myeloid leukemia cells, as shown for other BET bromodomain inhibitors and genetic BRD4 knockdown, whereas the reported compounds showed no general cytotoxicity in other cancer cell lines tested
    corecore