10,244 research outputs found

    Echocardiographic Assessment of Preload Responsiveness in Critically Ill Patients

    Get PDF
    Fluid challenges are considered the cornerstone of resuscitation in critically ill patients. However, clinical studies have demonstrated that only about 50% of hemodynamically unstable patients are volume responsive. Furthermore, increasing evidence suggests that excess fluid resuscitation is associated with increased mortality. It therefore becomes vital to assess a patient's fluid responsiveness prior to embarking on fluid loading. Static pressure (CVP, PAOP) and echocardiographic (IVC diameter, LVEDA) parameters fails to predict volume responsiveness. However, a number of dynamic echocardiographic parameters which are based on changes in vena-caval dimensions or cardiac function induce by positive pressure ventilation or passive leg raising appear to be highly predictive of volume responsiveness

    Cosmic strings and other topological defects

    Get PDF

    Twentieth Century Geomorphic Changes of the Lower Green River in Canyonlands National Park, Utah: An Investigation of Timing, Magnitude and Process

    Get PDF
    Since the early 20th century, the Green River, the longest tributary of the Colorado River, has narrowed, decreasing available riparian and aquatic habitat. Initially, the widespread establishment of non-native tamarisk was considered to be the primary driver of channel narrowing. An alternative hypothesis postulated that changes in hydrology drove narrowing. Reductions in total streamflow and changes to flow regime occurred due to wide-spread water development, decreased snowmelt flood magnitude, and the increased cyclicity of wet and dry years. The two hypotheses agree on channel narrowing, but each influences modern river management differently. A tamarisk-driven model of narrowing implies that modern flow management doesn’t substantially affect channel change. Conversely, channel narrowing driven by changes in hydrology implies that present flow management decisions matter and continued adjustments to flow regime may result in future channel change. To understand the roles of decreasing total annual flow, declining annual peak flood magnitude, and changing vegetation communities on 20th century channel narrowing, we investigated channel narrowing along the lower Green River within Canyonlands National Park (CNP). Previous studies agree that the channel has narrowed, however, the rate, timing and magnitude of documented narrowing are only partially understood. Multiple lines of evidence were used to reconstruct the history of channel narrowing in the lower Green River. This study focuses on channel narrowing, but additionally investigated possible changes to channel depth, identified process, timing and magnitude of floodplain formation. Floodplain formation was described in the field using stratigraphy, sedimentology, and dendrogeomorphology exposed in a floodplain trench. Channel and floodplain surveys were conducted to determine possible changes in bed elevation. Additionally, existing aerial imagery, hydrologic data, and sediment transport data were analyzed. These techniques were applied to determine magnitude, timing and processes of channel narrowing at multiple spatial and temporal scales. The floodplain investigation identified a new period of channel narrowing by vertical accretion after high peak flow years of 1983 and 1984. Narrowing was initiated by vertical accretion in the active channel, deposited by moderate floods exceeded more than 50% of the time. Vertical accretion continued in the early 1990s, converting the active channel into a periodically inundated floodplain surface. Suspended-sediment deposition dominated deposits, resulting in the formation of natural levees and floodplain troughs in both inset floodplains. Rates of deposition were highly variable, ranging from 0.03-0.50 m/yr. The lower Green River within Canyonlands National Park has narrowed substantially since the late 1800s, resulting in a narrower channel. Changes to flood magnitude, rate and timing since 1900, driven by increased water storage and diversion in the Green River basin and declines in annual precipitation, were responsible for inset floodplain formation. Floodplains of the contemporary lower Green River in CNP began forming in the late 1930s and continued to form and vertically aggrade in the 20th century by inset floodplain formation. During this time period, peak flow and total runoff declined due to climatic changes and water development. Analysis of aerial imagery covering 61 kilometers (km) of the Green River in CNP shows that changes to the floodplain identified in the trench are representative of the entire study area. The establishment of non-native tamarisk (Tamarix spp.) did not drive channel narrowing, though dense stands stabilized banks and likely promoted sediment deposition. The lower Green River narrowed 12% from 1940-2014, with the majority of narrowing (10% of all narrowing) occurring from the 1980s to the present. Inset floodplain formation reflects changes to flood magnitude and timing resulting from water development and decreases in natural runoff. Findings suggest that long-term management of the riverine corridor within Canyonlands National Park will require a greater focus on upstream flow contributions and how those flows are currently managed. Recovery of endangered endemic native fishes, the Colorado pikeminnow (Ptychocheilus lucius), and the razorback sucker (Xyrauchen texanus), plays a primary role in determining current flow allocations. Collaboration with upstream stakeholders and managers is necessary to maximize elements of the flow regime that preserve channel width and limit channel narrowing

    A Jurassic ornithischian dinosaur from Siberia with both feathers and scales

    Get PDF
    Feathers, not just for the birds? Theropod dinosaurs, thought to be the direct ancestors of birds, sported birdlike feathers. But were they the only feathery dino group? Godefroit et al. describe an early neornithischian dinosaur with both early feathers and scales. This seemingly feathery nontheropod dinosaur shows that feathers were not unique to the ancestors of birds and may even have been quite widespread. Science , this issue p. 451 </jats:p

    Year in review 2009: Critical Care - cardiac arrest, trauma and disasters

    Get PDF
    During 2009, Critical Care published nine papers on various aspects of resuscitation, prehospital medicine, trauma care and disaster response. One article demonstrated that children as young as 9 years of age can learn cardiopulmonary resuscitation (CPR) effectively, although, depending on their size, some may have difficulty performing it. Another paper showed that while there was a trend toward mild therapeutic hypothermia reducing S-100 levels, there was no statistically significant change. Another predictor study also showed a strong link between acute kidney injury and neurologic outcome while another article described a program in which kidneys were harvested from cardiac arrest patients and showed an 89% graft survival rate. One experimental investigation indicated that when a pump-less interventional lung assist device is present, leaving the device open (unclamped) while performing CPR has no harmful effects on mean arterial pressures and it may have positive effects on blood oxygenation and CO2 clearance. One other study, conducted in the prehospital environment, found that end-tidal CO2 could be useful in diagnosing pulmonary embolism. Three articles addressed disaster medicine, the first of which described a triage system for use during pandemic influenza that demonstrated high reliability in delineating patients with a good chance of survival from those likely to die. The other two studies, both drawn from the 2008 Sichuan earthquake experience, showed success in treating crush injured patients in an on-site tent ICU and, in the second case, how the epidemiology of earthquake injuries and related factors predicted mortality

    Year in review 2008: Critical Care - trauma

    Get PDF
    Eleven papers on trauma published in Critical Care during 2008 addressed traumatic brain injury (TBI), burns, diagnostic concerns and immunosuppression. In regard to TBI, preliminary results indicate the utility of either magnetic resonance imaging (MRI) or ultrasound in measuring optic nerve sheath diameter to identify elevated intracranial pressure (ICP) as well as the potential benefit of thiopental for refractory ICP. Another investigaticc7960on demonstrated that early extubation of TBI patients whose Glasgow Coma Scale score was 8 or less did not result in additional incidence of nosocomial pneumonia. Another study indicated that strict glucose control resulted in worse outcomes during the first week after TBI, but improved outcomes after the second week. Another paper showed the prolonged neuroprotective advantages of proges-terone administration in TBI patients. There was also guidance on improved classifications of renal complications in burn patients. Another study found that patients with inhalation injuries and increased interleukin-6 (IL-6) and IL-10 and decreased IL-7 had increased mortality rates. One literature review described the disadvantages of prolonged immobilization or additional use of MRI for ruling out cervical spine injuries in obtunded TBI patients already cleared by computerized tomography scans. Other investigators found that higher N-terminal pro B-type natriuretic peptide (NT-proBNP) levels may be useful markers for post-traumatic cardiac impairment. Finally, an experimental model showed that both splenic apoptosis and lymphocytopenia may occur shortly after severe hemorrhage, thus increasing the threat of immunosuppression in those with severe blood loss

    Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Get PDF
    This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE) method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiencyThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The PhD research of Xiang Shen is funded by China Scholarship Council (CSC)/Queen Mary Joint PhD scholarship
    corecore