2 research outputs found

    Electrospun Polythiophene Phenylenes for Tissue Engineering

    No full text
    This research focuses on the design of biocompatible materials/scaffold suitable for use for tissue engineering. Porous fiber mats were produced through electrospinning of polythiophene phenylene (PThP) conducting polymers blended with poly­(lactide-<i>co</i>-glycolic acid) (PLGA). A peptide containing an arginylglycylaspartic acid (RGD) fragment was synthesized using solid phase peptide synthesis and subsequently grafted onto a PThP polymer using azide–alkyne “click” chemistry. The obtained RGD functionalized PThP was also electrospun into a fiber mat. The electrospun mats’ morphology, roughness and stiffness were studied by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM) and their electroactivity by cyclic voltammetry. The fibers show excellent cytocompatibility in culture assays with human dermal fibroblasts-adult (HDFa) and human epidermal melanocytes-adult (HEMa) cells. The electrospun fibers’ roughness and stiffness changed after exposing the fiber mats to the cell culture medium (measured in dry state), but these changes did not affect the cell proliferation. The cytocompatibility of our porous scaffolds was established for their applicability as cell culture scaffolds by means of investigating mitochondrial activity of HDFa and HEMa cells on the scaffolds. The results revealed that the RGD moieties containing PThP scaffolds hold a promise in biomedical applications, including skin tissue engineering

    Molecularly Engineered Intrinsically Healable and Stretchable Conducting Polymers

    No full text
    Advances in stretchable electronics concern engineering of materials with strain-accommodating architectures and fabrication of nanocomposites by embedding a conductive component into an elastomer. The development of organic conductors that can intrinsically stretch and repair themselves after mechanical damage is only in the early stages yet opens unprecedented opportunities for stretchable electronics. Such functional materials would allow extended lifetimes of electronics as well as simpler processing methods for fabricating stretchable electronics. Herein, we present a unique molecular approach to intrinsically stretchable and healable conjugated polymers. The simple yet versatile synthetic procedure enables one to fine-tune the electrical and mechanical properties without disrupting the electronic properties of the conjugated polymer. The designed material is comprised of a hydrogen-bonding graft copolymer with a conjugated backbone. The morphological changes, which are affected by the composition of functional side chains, and the solvent quality of the casting solution play a crucial role in the synthesis of highly stretchable and room-temperature healable conductive electronic materials
    corecore