20 research outputs found

    Thermal Perception of Ventilation Changes in Full-Face Motorcycle Helmets: Subject and Manikin Study

    Get PDF
    We report the effects of full-face motorcycle helmet ventilation systems on heat, airflow, noise, and comfort perception for ventilation changes on the scalp. Eight subjects (aged 28.0 ± 5.4 years) underwent two experimental trials at ambient temperatures of 23.7 ± 0.4°C or 27.5 ± 0.3°C. In each trial, the thermally equilibrated subjects underwent two examination phases, during which four different helmets were assessed at wind speeds of 39.2 ± 1.9 km h−1 and 59.3 ± 1.4 km h−1. Vent-induced heat loss in the scalp ranged from −6.1 to 6.1 W, corresponding to vents being closed or opened, respectively. Perception of vent-induced changes was assessed immediately after the change. We find that the vent-induced heat loss, the subject, and the helmet are the most important response factors. In addition, comparison of two helmets with similar vent-induced heat loss suggests that internal airflow patterns may be important in explaining the observed perception difference

    The Effect of Two Sock Fabrics on Perception and Physiological Parameters Associated with Blister Incidence: A Field Study

    Get PDF
    The goal of the present study was to investigate differences in perception and skin hydration at the foot of two sock fabrics with distinct moisture properties in a realistic military setting. Thirty-seven military recruits wore two different socks (PP: 99.6% polypropylene and 0.4% elastane, and BLEND: 50% Merino-wool, 33% polypropylene, and 17% polyamide), one on each foot. Measurements were carried out after a daily 6.5-km march on 4 days. Each participant rated temperature, dampness, friction, and comfort for each foot. On a daily selection of participants, skin hydration was measured on three sites of both feet using a corneometer, and moisture content of the socks was determined. BLEND was rated to be cooler, less damp, and more comfortable (P < 0.05). Two out of three skin sites were drier for BLEND than PP (P < 0.05). Moreover, BLEND stored 2.9 ± 0.3 times more moisture compared to PP. Thus, under the present conditions, socks such as BLEND are to be preferred over polypropylene sock

    The Effect of Two Sock Fabrics on Physiological Parameters Associated with Blister Incidence: A Laboratory Study

    Get PDF
    The goal of the present study was to investigate physiological effects, mainly at the level of the foot, of two sock fabrics with distinct moisture properties. Twelve participants wore two different socks, one on each foot. The following two sock types were used: PP: 99.6% polypropylene and 0.4% elastane and BLEND: 50% Merino wool, 33% polypropylene, and 17% polyamide. The participants walked three times on a treadmill at 5 km h−1, with no gradient for the first and third phase and a 10% upward inclination for the second walking phase. The microclimate temperature between the boot and foot was measured during walking. Preceding and following the walking phases, additional measurements were carried out at the level of the foot, i.e. skin temperature and skin hydration on three locations and skin friction between the posterior surface of the calcaneus and a glass plate. In addition, the moisture absorption of boots and socks was determined. Differences between the sock fabrics were found for weight gain and microclimate temperature: (i) PP tended to hold less water compared to BLEND, (ii) the boot's microclimate temperature resulted in larger values for BLEND measured at the dorsal surface at the level of the third metatarsal, and (iii) warmer microclimates of the boot were measured for PP compared to BLEND at the distal anterior end of the tibia. The established differences in moisture behavior of both socks did not result in detectable differences in parameters measured on the skin of the foo

    Electron-spectroscopy study of LiC60: Charge transfer and dimer formation

    Get PDF
    Li−C60 compounds Lix¯C60 were studied for average Li concentration x¯<~1 using photoelectron spectroscopy. Strong evidence is found for the formation of LiC60 dimers, as well as a second phase. The study suggests that the smallest alkali-metal Li bonds to C60 largely ionically for certain configurations. An investigation of the Li 1s level shows that under certain conditions the energetics favor a backdonation of the transferred electron to the Li ion

    Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    Get PDF
    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorptio

    Investigation of the Spin Density Wave in NaxCoO2

    Full text link
    Magnetic susceptibility, transport and heat capacity measurements of single crystal NaxCoO2 (x=0.71) are reported. A transition to a spin density wave (SDW) state at Tmag = 22 K is observable in all measurements, except chi(ac) data in which a cusp is observed at 4 K and attributed to a low temperature glassy phase. M(H) loops are hysteretic below 15 K. Both the SDW transition and low temperature hysteresis are only visible along the c-axis. The system also exhibits a substantial (~40%) positive magnetoresistance below this temperature. Calculations of the electronic heat capacity gamma above and below Tmag and the size of the jump in C indicate that the onset of the SDW brings about the opening of gap and the removal of part of the Fermi surface. Reduced in-plane electron-electron scattering counteracts the loss of carriers below the transition and as a result we see a net reduction in resistivity below Tmag. Sodium ordering transitions at higher temperatures are observable as peaks in the heat capacity with a corresponding increase in resistivity.Comment: 14 pages, 6 figure

    HT2005-72751 FLOW VISUALIZATION OF BICYCLE HELMETS FOR OPTIMAL VENTILATION DESIGN

    No full text
    ABSTRACT Bicycle helmets present complex geometries intended for protection and ventilation. Models often seem driven by estheti
    corecore