46,259 research outputs found

    Dual-Species Plasmas Illustrate MHD Flows

    Get PDF
    Plasma loops created in the laboratory strongly resemble structures observed in the solar corona. For example, both solar coronal loops and experimental loops exhibit remarkably uniform axial cross sections. A magnetohydrodynamic theory that was proposed to explain this phenomenon predicts that a plasma loop whose axial magnetic field is constricted at both footpoints will experience bulk flows into the loop from both ends. To test this theory, dual-species plasma loops were formed by supplying a different neutral gas to each of the two footpoints. Optical filters were then used to separately image the motion of different sections of the plasma. Bulk flows were, in fact, observed

    Doubly heavy hadrons and the domain of validity of doubly heavy diquark--anti-quark symmetry

    Get PDF
    In the limit of heavy quark masses going to infinity, a symmetry is known to emerge in QCD relating properties of hadrons with two heavy quarks to analogous states with one heavy anti-quark. A key question is whether the charm mass is heavy enough so that this symmetry is manifest in at least an approximate manner. The issue is crucial in attempting to understand the recent reports by the SELEX Collaboration of doubly charmed baryons. We argue on very general grounds that the charm quark mass is substantially too light for the symmetry to emerge automatically via colour coulombic interactions. However, the symmetry could emerge approximately depending on the dynamical details.Comment: 9 page

    Random Walk Access Times on Partially-Disordered Complex Networks: an Effective Medium Theory

    Get PDF
    An analytic effective medium theory is constructed to study the mean access times for random walks on hybrid disordered structures formed by embedding complex networks into regular lattices, considering transition rates FF that are different for steps across lattice bonds from the rates ff across network shortcuts. The theory is developed for structures with arbitrary shortcut distributions and applied to a class of partially-disordered traversal enhanced networks in which shortcuts of fixed length are distributed randomly with finite probability. Numerical simulations are found to be in excellent agreement with predictions of the effective medium theory on all aspects addressed by the latter. Access times for random walks on these partially disordered structures are compared to those on small-world networks, which on average appear to provide the most effective means of decreasing access times uniformly across the network.Comment: 12 pages, 8 figures; added new results and discussion; added appendix on numerical procedures. To appear in PR

    Considerations concerning fatigue life of metal matrix composites

    Get PDF
    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined

    Preliminary results on two-dimensional interferometry of HL Tau

    Get PDF
    Preliminary two-dimensional speckle interferometry results of HL Tau were found to be qualitatively similar to those found with one-dimensional slit scanning techniques; results consist of a resolved component (approximately 0.7 arcsec in size) and an unresolved component. Researchers are currently reducing the rest of the data (taken on three different telescopes and at three different wavelengths) and are also exploring other high resolution methods like the shift and add technique and selecting only the very best images for processing. The availability of even better two-dimensional arrays within the next couple of years promises to make speckle interferometry and other high resolution techniques very powerful and exiting tools for probing a variety of objects in the subarcsec regime

    ROBUSTNESS OF NON-PARAMETRIC MEASUREMENT OF EFFICIENCY AND RISK AVERSION

    Get PDF
    This paper examines the performance of a risk-adjusted non-parametric approach to measuring efficiency and risk aversion. Prior work is extended to the case where agent behavior is motivated by expected utility maximization. Results indicate the approach significantly outperforms traditional efficiency measurement methods when applied to risk averse agents.Risk and Uncertainty,

    Accurate nine-decade temperature-compensated logarithmic amplifier

    Get PDF
    Transistor-driven temperature-stable amplifier with logarithmic operating characteristics permits presentation of the entire range of the reactor without range switching. This circuit is capable of monitoring ion chamber currents over spans of 8 or 9 decades and is used in nuclear reactor instrumentation. Application is found in materials under ultrahigh vacuum

    Understanding practitioner professionalism in Aboriginal and Torres Strait Islander health: lessons from student and registrar placements at an urban Aboriginal and Torres Strait Islander primary health care service

    Get PDF
    Aboriginal and Torres Strait Islander peoples continue to be pathologised in medical curriculum, leaving graduates feeling unequipped to effectively work cross-culturally. These factors create barriers to culturally safe health care for Aboriginal and Torres Strait Islander peoples. In this pilot pre-post study, we followed the learning experiences of 7 medical students and 4 medical registrars undertaking clinical placements at an urban Aboriginal and Torres Strait Islander primary health care service in 2014. Through analysis and comparison of pre- and post-placement responses to a paper-based case study of a fictitious Aboriginal patient, we identified four learning principles for medical professionalism: student exposure to nuanced, complex and positive representations of Aboriginal peoples; positive practitioner role modelling; interpersonal skills that build trust and minimise patient-practitioner relational power imbalances; and, knowledge, understanding and skills for providing patient centred, holistic care. Though not exhaustive, these principles can increase the capacity of practitioners to foster culturally safe and optimal health care for Aboriginal peoples. Furthermore, competence and effectiveness in Aboriginal health contexts is an essential component of medical professionalism

    Symmetric Rotating Wave Approximation for the Generalized Single-Mode Spin-Boson System

    Full text link
    The single-mode spin-boson model exhibits behavior not included in the rotating wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating wave approximation both off-resonance and at deep strong coupling. The symmetric rotating wave approximation allows for the treatment of certain ultra and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak coupling regime. Additionally, we symmetrize the generalized form of the rotating wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.Comment: 11 pages, 5 figure

    Anisotropic Hc2 of K0.8Fe1.76Se2 determined up to 60 T

    Get PDF
    The anisotropic upper critical field, Hc2(T), curves for K0.8Fe1.76Se2 are determined over a wide range of temperatures down to 1.5 K and magnetic fields up to 60 T. Anisotropic initial slopes of Hc2 ~ -1.4 T/K and -4.6 T/K for magnetic field applied along c-axis and ab-plane, respectively, were observed. Whereas the c-axis Hc2|c(T) increases quasi-linearly with decreasing temperature, the ab-plane Hc2|ab(T) shows a flattening, starting near 25 K above 30 T. This leads to a non-monotonic temperature dependence of the anisotropy parameter \gamma= Hc2|ab/Hc2|c. The anisotropy parameter is ~ 2 near Tc ~ 32 K and rises to a maximum \gamma ~ 3.6 around 27 K. For lower temperatures, \gamma decreases with T in a linear fashion, dropping to \gamma ~ 2.5 by T ~ 18 K. Despite the apparent differences between the K0.8Fe1.76Se2 and (Ba0.55K0.45)Fe2As2 or Ba(Fe0.926Co0.074)2As2, in terms of the magnetic state and proximity to an insulating state, the Hc2(T) curves are remarkably similar.Comment: slightly modified version, accepted to PRB, Rapid Communication
    corecore