14 research outputs found
A survey on learning models of spiking neural membrane systems and spiking neural networks
Spiking neural networks (SNN) are a biologically inspired model of neural
networks with certain brain-like properties. In the past few decades, this
model has received increasing attention in computer science community, owing
also to the successful phenomenon of deep learning. In SNN, communication
between neurons takes place through the spikes and spike trains. This
differentiates these models from the ``standard'' artificial neural networks
(ANN) where the frequency of spikes is replaced by real-valued signals. Spiking
neural P systems (SNPS) can be considered a branch of SNN based more on the
principles of formal automata, with many variants developed within the
framework of the membrane computing theory. In this paper, we first briefly
compare structure and function, advantages and drawbacks of SNN and SNPS. A key
part of the article is a survey of recent results and applications of machine
learning and deep learning models of both SNN and SNPS formalisms
On derivation languages of a class of splicing systems
Derivation languages are language theoretical tools that describe halting derivation processes of a generating device. We consider two types of derivation languages, namely Szilard and control languages for splicing systems where iterated splicing is done in non-uniform way defined by Mitrana, Petre and Rogojin in 2010. The families of Szilard (rules and labels are mapped in a one to one manner) and control (more than one rule can share the same label) languages generated by splicing systems of this type are then compared with the family of languages in the Chomsky hierarchy. We show that context-free languages can be generated as Szilard and control languages and any non-empty context-free language is a morphic image of the Szilard language of this type of system with finite set of rules and axioms. Moreover, we show that these systems with finite set of axioms and regular set of rules are capable of generating any recursively enumerable language as a control language
Multi-behaviors coordination controller design with enzymatic numerical P systems for robots
Membrane computing models are parallel and distributed natural computing models. These models are often referred to as P systems. This paper proposes a novel multi-behaviors coordination controller model using enzymatic numerical P systems for autonomous mobile robots navigation in unknown environments. An environment classifier is constructed to identify different environment patterns in the maze-like environment and the multi-behavior coordination controller is constructed to coordinate the behaviors of the robots in different environments. Eleven sensory prototypes of local environments are presented to design the environment classifier, which needs to memorize only rough information , for solving the problems of poor obstacle clearance and sensor noise. A switching control strategy and multi-behaviors coordinator are developed without detailed environmental knowledge and heavy computation burden, for avoiding the local minimum traps or oscillation problems and adapt to the unknown environments. Also, a serial behaviors control law is constructed on the basis of Lyapunov stability theory aiming at the specialized environment, for realizing stable navigation and avoiding actuator saturation. Moreover, both environment classifier and multi-behavior coordination controller are amenable to the addition of new environment models or new behaviors due to the modularity of the hierarchical architecture of P systems. The simulation of wheeled mobile robots shows the effectiveness of this approach
A Complete Arithmetic Calculator Constructed from Spiking Neural P Systems and its Application to Information Fusion
© World Scientific Publishing Company Several variants of spiking neural P systems (SNPS) have been presented in the literature to perform arithmetic operations. However, each of these variants was designed only for one specific arithmetic operation. In this paper, a complete arithmetic calculator implemented by SNPS is proposed. An application of the proposed calculator to information fusion is also proposed. The information fusion is implemented by integrating the following three elements: (1) an addition and subtraction SNPS already reported in the literature; (2) a modified multiplication and division SNPS; (3) a novel storage SNPS, i.e. a method based on SNPS is introduced to calculate basic probability assignment of an event. This is the first attempt to apply arithmetic operation SNPS to fuse multiple information. The effectiveness of the presented general arithmetic SNPS calculator is verified by means of several examples
An Adaptive Optimization Spiking Neural P System for Binary Problems
© 2020 World Scientific Publishing Company. Optimization Spiking Neural P System (OSNPS) is the first membrane computing model to directly derive an approximate solution of combinatorial problems with a specific reference to the 0/1 knapsack problem. OSNPS is composed of a family of parallel Spiking Neural P Systems (SNPS) that generate candidate solutions of the binary combinatorial problem and a Guider algorithm that adjusts the spiking probabilities of the neurons of the P systems. Although OSNPS is a pioneering structure in membrane computing optimization, its performance is competitive with that of modern and sophisticated metaheuristics for the knapsack problem only in low dimensional cases. In order to overcome the limitations of OSNPS, this paper proposes a novel Dynamic Guider algorithm which employs an adaptive learning and a diversity-based adaptation to control its moving operators. The resulting novel membrane computing model for optimization is here named Adaptive Optimization Spiking Neural P System (AOSNPS). Numerical result shows that the proposed approach is effective to solve the 0/1 knapsack problems and outperforms multiple various algorithms proposed in the literature to solve the same class of problems even for a large number of items (high dimensionality). Furthermore, case studies show that a AOSNPS is effective in fault sections estimation of power systems in different types of fault cases: including a single fault, multiple faults and multiple faults with incomplete and uncertain information in the IEEE 39 bus system and IEEE 118 bus system
On Applications of Spiking Neural P Systems
Over the years, spiking neural P systems (SNPS) have grown into a popular model in membrane computing because of their diverse range of applications. In this paper, we give a comprehensive summary of applications of SNPS and its variants, especially highlighting power systems fault diagnoses with fuzzy reasoning SNPS. We also study the structure and workings of these models, their comparisons along with their advantages and disadvantages. We also study the implementation of these models in hardware. Finally, we discuss some new ideas which can further expand the scope of applications of SNPS models as well as their implementations
Automatic Design of Spiking Neural P Systems Based on Genetic Algorithms
At present, all known spiking neural P systems (SN P systems) are established by manual design rather than automatic design. The method of manual design poses two problems: consuming a lot of computing time and making unnecessary mistakes. In this paper, we propose an automatic design approach for SN P systems by genetic algorithms. More specifically, the regular expressions are changed to achieve the automatic design of SN P systems. In this method, the number of neurons in system, the synapse connections between neurons, the number of rules within each neuron and the number of spikes within each neuron are known. A population of SN P systems is created by generating randomly accepted regular expressions. A genetic algorithm is applied to evolve a population of SN P systems toward a successful SN P systems with high accuracy and sensitivity for carrying out specific task. An effective fitness function is designed to evaluate each candidate SN P system. In addition, the elitism, crossover and mutation are also designed. Finally, experimental results show that the approach can successfully accomplish the automatic design of SN P systems for generating natural numbers and even natural numbers by using the .NET framework
A Review of Power System Fault Diagnosis with Spiking Neural P Systems
With the advancement of technologies it is becoming imperative to have a stable, secure and uninterrupted supply of power to electronic systems as well as to ensure the identification of faults occurring in these systems quickly and efficiently in case of any accident. Spiking neural P system (SNPS) is a popular parallel distributed computing model. It is inspired by the structure and functioning of spiking neurons. It belongs to the category of neural-like P systems and is well-known as a branch of the third generation neural networks. SNPS and its variants can perform the task of fault diagnosis in power systems efficiently. In this paper, we provide a comprehensive survey of these models, which can perform the task of fault diagnosis in transformers, power transmission networks, traction power supply systems, metro traction power supply systems, and electric locomotive systems. Furthermore, we discuss the use of these models in fault section estimation of power systems, fault location identification in distribution network, and fault line detection. We also discuss a software tool which can perform the task of fault diagnosis automatically. Finally, we discuss future research lines related to this topic