18 research outputs found

    Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation

    Full text link
    We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.Comment: 17 pages, 18 figures. v2: includes additional references and minor corrections/clarifications. v3: includes additional text, figures, and references (matches published version

    Neutrino Flavor Evolution in Neutron Star Mergers

    Full text link
    We examine the flavor evolution of neutrinos emitted from the disk-like remnant (hereafter called \lq\lq neutrino disk\rq\rq) of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra, and for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino dominated case, we found that the Matter-Neutrino Resonance (MNR) effect dominates, consistent with previous results, whereas in the neutrino dominated case, a bipolar spectral swap develops. The neutrino dominated conditions required for this latter result have been realized, e.g, in a BNS merger simulation that employs the \lq\lq DD2\rq\rq\ equation of state for neutron star matter[Phys. Rev. D 93, 044019 (2016)]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein (MSW) mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of rr-process nucleosynthesis in the material ejected outside the plane of the neutrino disk.Comment: Version published in Physical Review D. 22 pages, 16 figures, 9 tables. For movies see Ancillary files in version

    Diluted equilibrium sterile neutrino dark matter

    Full text link
    We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.Comment: 15 pages, 6 figures. v2: changes in text and figures; matches published versio
    corecore