163 research outputs found

    Named Models in Coalgebraic Hybrid Logic

    Full text link
    Hybrid logic extends modal logic with support for reasoning about individual states, designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Coalgebraic Weak Bisimulation from Recursive Equations over Monads

    Full text link
    Strong bisimulation for labelled transition systems is one of the most fundamental equivalences in process algebra, and has been generalised to numerous classes of systems that exhibit richer transition behaviour. Nearly all of the ensuing notions are instances of the more general notion of coalgebraic bisimulation. Weak bisimulation, however, has so far been much less amenable to a coalgebraic treatment. Here we attempt to close this gap by giving a coalgebraic treatment of (parametrized) weak equivalences, including weak bisimulation. Our analysis requires that the functor defining the transition type of the system is based on a suitable order-enriched monad, which allows us to capture weak equivalences by least fixpoints of recursive equations. Our notion is in agreement with existing notions of weak bisimulations for labelled transition systems, probabilistic and weighted systems, and simple Segala systems.Comment: final versio

    Named Models in Coalgebraic Hybrid Logic

    Get PDF
    Hybrid logic extends modal logic with support for reasoning about individual states, designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding

    The Alternating-Time ?-Calculus with Disjunctive Explicit Strategies

    Get PDF

    Strong Completeness of Coalgebraic Modal Logics

    Get PDF
    Canonical models are of central importance in modal logic, in particular as they witness strong completeness and hence compactness. While the canonical model construction is well understood for Kripke semantics, non-normal modal logics often present subtle difficulties - up to the point that canonical models may fail to exist, as is the case e.g. in most probabilistic logics. Here, we present a generic canonical model construction in the semantic framework of coalgebraic modal logic, which pinpoints coherence conditions between syntax and semantics of modal logics that guarantee strong completeness. We apply this method to reconstruct canonical model theorems that are either known or folklore, and moreover instantiate our method to obtain new strong completeness results. In particular, we prove strong completeness of graded modal logic with finite multiplicities, and of the modal logic of exact probabilities

    Computable Functions on Final Coalgebras

    Get PDF
    AbstractThis paper tackles computability issues on final coalgebras and tries to shed light on the following two questions: First, which functions on final coalgebras are computable? Second, which formal system allows us to define all computable functions on final coalgebras?In particular, we give a definition of computability on final coalgebras, deriving from the theory of effective domains. We then establish the admissibility of coinductive definitions and of a generalised μ-operator. This gives rise to a formal system, in which every term denotes a computable function

    The Logic of Exact Covers: Completeness and Uniform Interpolation

    Get PDF
    We show that all (not necessarily normal or monotone) modal logics that can be axiomatised in rank-1 have the interpolation property, and that in fact interpolation is uniform if the logics just have finitely many modal operators. As immediate applicatio
    • …
    corecore