104 research outputs found

    Sea-Level Rise Induced Amplification of Coastal Protection Design Heights

    Get PDF
    Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48-56%, relative to design changes caused by SLR alone. Since many of the world\u27s most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions

    Some old movies become classics - a case study determining the scientific value of ROV inspection footage on a platform on Australia\u27s North West Shelf

    Get PDF
    The global oil and gas industry holds a vast archive of Remotely Operated Vehicle (ROV) inspection footage potentially containing useful long-term data on marine biological communities. With the upcoming era of decommissioning of oil and gas structures, it is timely to assess the usefulness of this footage for researching these communities. We used ROV inspection footage to characterize the sessile invertebrates and fishes associated with the Goodwyn Alpha Production Platform (GWA) on the North West Shelf of Australia between depths of 10 and 125 m during 2006 and 2008. Depth was a major driver of invertebrate assemblages, most likely due to specific requirements such as light, and differences between years were most likely from the physical detachment of species by cyclones and internal waves. Phototrophic species were mostly limited to the upper 50 m of the platform, including the hard coral Pocillopora sp. and the soft corals Nephthea sp. and Scleronephthya sp. In contrast, heterotrophic species including sponges, anemones, bryozoans, hydroids, bivalves such as Lopha folium and the hard coral Tubastrea spp., were distributed across all depths. We observed 1791 fish from at least 10 families and 19 species, including commercial species such as crimson seaperch (Lutjanus erythropterus), red emperor (L. sebae), saddle-tailed seaperch (L. malabaricus), mangrove jack (L. argentimaculatus) and trevally (Caranx spp.). Fish density increased significantly with depth during 2008, from a mean of 23 fish/50 m2 between 10 and 25 m to 3373 fish/50 m2 at 125 m, where small unidentified baitfish were abundant. The highest densities of commercial species occurred between 25 and 75 m depth, suggesting that mid-depth platform sections had high habitat value, a consideration when selecting decommissioning options. The greatest difficulties using the video were the poor lighting and resolution that inhibited our ability to identify sessile species with high taxonomic precision. However, the footage was useful for evaluating high-level biodiversity of the platform, understanding how fish and invertebrate communities changed with depth and comprehending the dynamic nature of the invertebrate community over time. Understanding the habitat value of structures will be necessary for making environmentally sound decommissioning decisions in the future

    On the factors influencing the development of sporadic upwelling in the Leeuwin Current system

    Get PDF
    While there is no persistent upwelling along the West-Australian (WA) coastline, sporadic upwelling events have been documented primarily in summer. By analyzing comparatively the variability of both Ekman and geostrophic cross-shore transports over a seasonal cycle, we show that the situation is more contrasted. Based on a composite index computed from satellite data over a 15 year period, calibrated with well documented events, we investigate the factors influencing the development of sporadic upwelling in the region. Overall, the occurrence of transient upwelling events lasting 3–10 days varies largely in space and time. Shelf regions at 31.5 and 34°S are favored with up to 12 upwelling days per month during the austral spring/summer. Although being generally favored from September to April, sporadic upwelling events can also occur at any time of the year at certain locations north of 30°S. On average over 1995–2010, the Ningaloo region (22.5°S) cumulates the highest number of upwelling (∼140 days per year) and is characterized by longer events. The intensity of intermittent upwelling is influenced by the upwelling-favorable winds, the characteristics of the Leeuwin Current (e.g., onshore geostrophic flow, mesoscale eddies and meanders, stratification and nitracline) and the local topography. This suggests that short-living nutrient enrichment of variable magnitude may occur at any time of the year at many locations along the WA coast.This research was supported under Australian Research Council's Discovery Project funding scheme (DP1093510) which also supports V.R. acknowledges support from MICINN and FEDER through project ESCOLA (CTM2012-39025-C02-01) while revising this paper. M.F. is supported by the CSIRO Wealth from Oceans Flagship. The authors acknowledge J. Sudre who provided the satellite archives. QuikSCAT and SeaWinds data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team.Peer reviewe

    First insights Into the fine-scale movements of the Sandbar Shark, Carcharhinus plumbeus

    Get PDF
    The expanding use of biologging tags in studies of shark movement provides an opportunity to elucidate the context and drivers of fine-scale movement patterns of these predators. In May 2017, we deployed high-resolution biologging tags on four mature female sandbar sharks Carcharhinus plumbeus at Ningaloo Reef for durations ranging between 13 and 25.5 h. Pressure and tri-axial motion sensors within these tags enabled the calculation of dive geometry, swimming kinematics and path tortuosity at fine spatial scales (m-km) and concurrent validation of these behaviors from video recordings. Sandbar sharks oscillated through the water column at shallow dive angles, with gliding behavior observed in the descent phase for all sharks. Continual V-shaped oscillatory movements were occasionally interspersed by U-shaped dives that predominately occurred around dusk. The bottom phase of these U-shaped dives likely occurred on the seabed, with dead-reckoning revealing a highly tortuous, circling track. By combining these fine-scale behavioral observations with existing ecological knowledge of sandbar habitat and diet, we argue that these U-shaped dives are likely to be a strategy for bentho-pelagic foraging. Comparing the diving geometry of sandbar sharks with those of other shark species reveals common patterns in oscillatory swimming. Collectively, the fine-scale movement patterns of sandbar sharks reported here are consistent with results of previous biologging studies that emphasize the role of cost-efficient foraging in sharks

    The influence of reef topography on storm-driven sand flux

    Get PDF
    Natural formations of rock and coral can support geologically controlled beaches, where the beach dynamics are significantly influenced by these structures. However, little is known about how alongshore variations in geological controls influence beach morphodynamics. Therefore, in this study we focus on the storm response of a beach (Yanchep in south Western Australia) that has strong alongshore variation in the level of geological control because of the heterogeneous calcarenite limestone reef. We used a modified version of XBeach to simulate the beach morphodynamics during a significant winter storm event. We find that the longshore variation in topography of the reef resulted in: (1) strong spatial difference in current distribution, including areas with strong currents jets; and (2) significant alongshore differences in sand flux, with larger fluxes in areas strongly geologically controlled by reefs. In particular, this resulted in enhanced beach erosion at the boundary of the reef where strong currents jet-exited the nearshore

    The influence of turbulent bursting on sediment resuspension under fluvial unidirectional currents

    Get PDF
    Laboratory experiments were undertaken in a unidirectional current flume in order to examine the role of turbulence on incipient sediment motion. An acoustic Doppler velocimeter was used to measure the instantaneous three-dimensional velocity components and acoustic backscatter (related to suspended sediment concentration). The relationship between wall turbulence (in particular, the "bursting" phenomenon) and resuspension of a non-cohesive sediment bed was examined. The results within a range above and below the measured critical velocity suggested that: 1) the contribution of turbulent bursting events remained identical in both experimental conditions; 2) ejection and sweep events contributed more to the total sediment flux than up-acceleration and down-deceleration events; and 3) wavelet transform revealed a correlation between the momentum and sediment flux in both test conditions. Such similarities in conditions above and below the measured critical velocity highlighted the need to re-evaluate the accuracy of a single time-averaged critical velocity for the initiation of sediment entrainment

    Some old movies become classics - a case study determining the scientific value of ROV inspection footage on a platform on Australia's North West Shelf

    Get PDF
    © 2018 Thomson, Fowler, Davis, Pattiaratchi and Booth. The global oil and gas industry holds a vast archive of Remotely Operated Vehicle (ROV) inspection footage potentially containing useful long-term data on marine biological communities. With the upcoming era of decommissioning of oil and gas structures, it is timely to assess the usefulness of this footage for researching these communities. We used ROV inspection footage to characterize the sessile invertebrates and fishes associated with the Goodwyn Alpha Production Platform (GWA) on the North West Shelf of Australia between depths of 10 and 125 m during 2006 and 2008. Depth was a major driver of invertebrate assemblages, most likely due to specific requirements such as light, and differences between years were most likely from the physical detachment of species by cyclones and internal waves. Phototrophic species were mostly limited to the upper 50 m of the platform, including the hard coral Pocillopora sp. and the soft corals Nephthea sp. and Scleronephthya sp. In contrast, heterotrophic species including sponges, anemones, bryozoans, hydroids, bivalves such as Lopha folium and the hard coral Tubastrea spp., were distributed across all depths. We observed 1791 fish from at least 10 families and 19 species, including commercial species such as crimson seaperch (Lutjanus erythropterus), red emperor (L. sebae), saddle-tailed seaperch (L. malabaricus), mangrove jack (L. argentimaculatus) and trevally (Caranx spp.). Fish density increased significantly with depth during 2008, from a mean of 23 fish/50 m2 between 10 and 25 m to 3373 fish/50 m2 at 125 m, where small unidentified baitfish were abundant. The highest densities of commercial species occurred between 25 and 75 m depth, suggesting that mid-depth platform sections had high habitat value, a consideration when selecting decommissioning options. The greatest difficulties using the video were the poor lighting and resolution that inhibited our ability to identify sessile species with high taxonomic precision. However, the footage was useful for evaluating high-level biodiversity of the platform, understanding how fish and invertebrate communities changed with depth and comprehending the dynamic nature of the invertebrate community over time. Understanding the habitat value of structures will be necessary for making environmentally sound decommissioning decisions in the future

    First ROV exploration of the Perth Canyon: Canyon setting, faunal observations, and anthropogenic impacts.

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trotter, J. A., Pattiaratchi, C., Montagna, P., Taviani, M., Falter, J., Thresher, R., Hosie, A., Haig, D., Foglini, F., Hua, Q., & McCulloch, M. T. First ROV exploration of the Perth Canyon: Canyon setting, faunal observations, and anthropogenic impacts. Frontiers in Marine Science, 6, (2019):173, doi:10.3389/fmars.2019.00173.This study represents the first ROV-based exploration of the Perth Canyon, a prominent submarine valley system in the southeast Indian Ocean offshore Fremantle (Perth), Western Australia. This multi-disciplinary study characterizes the canyon topography, hydrography, anthropogenic impacts, and provides a general overview of the fauna and habitats encountered during the cruise. ROV surveys and sample collections, with a specific focus on deep-sea corals, were conducted at six sites extending from the head to the mouth of the canyon. Multi-beam maps of the canyon topography show near vertical cliff walls, scarps, and broad terraces. Biostratigraphic analyses of the canyon lithologies indicate Late Paleocene to Late Oligocene depositional ages within upper bathyal depths (200–700 m). The video footage has revealed a quiescent ‘fossil canyon’ system with sporadic, localized concentrations of mega- and macro-benthos (∼680–1,800 m), which include corals, sponges, molluscs, echinoderms, crustaceans, brachiopods, and worms, as well as plankton and nekton (fish species). Solitary (Desmophyllum dianthus, Caryophyllia sp., Vaughanella sp., and Polymyces sp.) and colonial (Solenosmilia variabilis) scleractinians were sporadically distributed along the walls and under overhangs within the canyon valleys and along its rim. Gorgonian, bamboo, and proteinaceous corals were present, with live Corallium often hosting a diverse community of organisms. Extensive coral graveyards, discovered at two disparate sites between ∼690–720 m and 1,560–1,790 m, comprise colonial (S. variabilis) and solitary (D. dianthus) scleractinians that flourished during the last ice age (∼18 ka to 33 ka BP). ROV sampling (674–1,815 m) spanned intermediate (Antarctic Intermediate Water) and deep waters (Upper Circumpolar Deep Water) with temperatures from ∼2.5 to 6°C. Seawater CTD profiles of these waters show consistent physical and chemical conditions at equivalent depths between dive sites. Their carbonate chemistry indicate supersaturation (Ωcalcite ∼ 1.3–2.2) with respect to calcite, but mild saturation to undersaturation (Ωaragonite ∼ 0.8–1.4) of aragonite; notably some scleractinians were found living below the aragonite saturation horizon (∼1,000 m). Seawater δ13C and nuclear bomb produced Δ14C compositions decrease in the upper canyon waters by up to ∼0.8‰ (<800 m) and 95‰ (<500 m), respectively, relative to measurements taken nearby in 1978, reflecting the ingress of anthropogenic carbon into upper intermediate waters.This work was supported by research funding from the Australian Research Council to MM (FL120100049) and JT (FT160100259), the Italian National Programme of Antarctic Research (PNRA16-00069 Graceful Project) to PM and MT, the Australian Institute of Nuclear Science and Engineering to MM, JT, JF, RT, MT, PM (AINSE Award 16/009). Supplementary oceanographic data are funded through Integrated Marine Observing System (IMOS) supported by the Australian Government

    Some Old Movies Become Classics – A Case Study Determining the Scientific Value of ROV Inspection Footage on a Platform on Australia’s North West Shelf

    Get PDF
    The global oil and gas industry holds a vast archive of Remotely Operated Vehicle (ROV) inspection footage potentially containing useful long-term data on marine biological communities. With the upcoming era of decommissioning of oil and gas structures, it is timely to assess the usefulness of this footage for researching these communities. We used ROV inspection footage to characterize the sessile invertebrates and fishes associated with the Goodwyn Alpha Production Platform (GWA) on the North West Shelf of Australia between depths of 10 and 125 m during 2006 and 2008. Depth was a major driver of invertebrate assemblages, most likely due to specific requirements such as light, and differences between years were most likely from the physical detachment of species by cyclones and internal waves. Phototrophic species were mostly limited to the upper 50 m of the platform, including the hard coral Pocillopora sp. and the soft corals Nephthea sp. and Scleronephthya sp. In contrast, heterotrophic species including sponges, anemones, bryozoans, hydroids, bivalves such as Lopha folium and the hard coral Tubastrea spp., were distributed across all depths. We observed 1791 fish from at least 10 families and 19 species, including commercial species such as crimson seaperch (Lutjanus erythropterus), red emperor (L. sebae), saddle-tailed seaperch (L. malabaricus), mangrove jack (L. argentimaculatus) and trevally (Caranx spp.). Fish density increased significantly with depth during 2008, from a mean of 23 fish/50 m2 between 10 and 25 m to 3373 fish/50 m2 at 125 m, where small unidentified baitfish were abundant. The highest densities of commercial species occurred between 25 and 75 m depth, suggesting that mid-depth platform sections had high habitat value, a consideration when selecting decommissioning options. The greatest difficulties using the video were the poor lighting and resolution that inhibited our ability to identify sessile species with high taxonomic precision. However, the footage was useful for evaluating high-level biodiversity of the platform, understanding how fish and invertebrate communities changed with depth and comprehending the dynamic nature of the invertebrate community over time. Understanding the habitat value of structures will be necessary for making environmentally sound decommissioning decisions in the future
    corecore