3,703 research outputs found

    Gender and innovation processes in wheat-based systems

    Get PDF
    This WHEAT report is based on 43 village case studies from eight countries set in diverse wheat-based farming regions of the Global South

    From Legislature to Litigation: The Real Medical Malpractice Crisis

    Get PDF

    From Legislature to Litigation: The Real Medical Malpractice Crisis

    Get PDF

    Can a microscopic stochastic model explain the emergence of pain cycles in patients?

    Full text link
    A stochastic model is here introduced to investigate the molecular mechanisms which trigger the perception of pain. The action of analgesic drug compounds is discussed in a dynamical context, where the competition with inactive species is explicitly accounted for. Finite size effects inevitably perturb the mean-field dynamics: Oscillations in the amount of bound receptors spontaneously manifest, driven by the noise which is intrinsic to the system under scrutiny. These effects are investigated both numerically, via stochastic simulations and analytically, through a large-size expansion. The claim that our findings could provide a consistent interpretative framework to explain the emergence of cyclic behaviors in response to analgesic treatments, is substantiated.Comment: J. Stat. Mech. (Proceedings UPON2008

    Gender and innovation processes in maize-based systems

    Get PDF
    This MAIZE report offers a panorama of the gender dimensions of local agricultural innovation processes in the context of maize-based farming systems and livelihoods

    Stochastic Turing Patterns on a Network

    Full text link
    The process of stochastic Turing instability on a network is discussed for a specific case study, the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes, outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically, and eventually traced back to the finite size corrections stemming from the inherent graininess of the scrutinized medium.Comment: The movies referred to in the paper are provided upon request. Please send your requests to Duccio Fanelli ([email protected]) or Francesca Di Patti ([email protected]

    Primary Esophageal Motility Disorders: Beyond Achalasia

    Get PDF
    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia

    Non-Gaussian fluctuations in stochastic models with absorbing barriers

    Full text link
    The dynamics of a one-dimensional stochastic model is studied in presence of an absorbing boundary. The distribution of fluctuations is analytically characterized within the generalized van Kampen expansion, accounting for higher order corrections beyond the conventional Gaussian approximation. The theory is shown to successfully capture the non Gaussian traits of the sought distribution returning an excellent agreement with the simulations, for {\it all times} and arbitrarily {\it close} to the absorbing barrier. At large times, a compact analytical solution for the distribution of fluctuations is also obtained, bridging the gap with previous investigations, within the van Kampen picture and without resorting to alternative strategies, as elsewhere hypothesized.Comment: 2 figures, submitted to Phys. Rev. Let
    corecore