138 research outputs found

    After hours nurse staffing, work intensity and quality of care - Missed Care Study: South Australia

    Get PDF
    During November, 2012, the Flinders University After Hours Nurse Staffing, Work Intensity and Quality of Care project team, in collaboration with the Australian Nursing and Midwifery Federation, SA Branch (ANMFSA), administered the MISSCARE survey to a sample of 354 nurse/midwife members of ANMFSA. The survey contained 13 demographic questions, 28 questions that explored working conditions, 96 questions concerning missed nursing care (defined as care that is omitted, postponed, or incomplete) and 17 questions concerning perceived reasons care is omitted in the settings in which the nurse/midwives practice. In addition, respondents were asked to add comments of their own concerning nursing care that is missed and why

    An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming.

    Get PDF
    Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT-PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated

    Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    Get PDF
    Summary Statement We show that in utero undernutrition is associated with impaired cardiac muscle energetics and increased plasma short-chain acylcarnitines in adult mice. Findings suggest that in utero undernutrition is associated with maladaptive programming processes that have negative effects on the heart. Synopsis Intrauterine growth restriction is associated with an increased risk of developing obesity, insulin resistance, and cardiovascular disease. However its effect on energetics in heart remains unknown. In this study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate, and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have lifelong implications for cardiovascular function and disease risk
    • …
    corecore