20,180 research outputs found
Apollo experience report: Guidance and control systems: Command and service module entry monitor subsystem
The conceptual aspects of the command and service module entry monitor subsystem, together with an interpretation of the displays and their associated relationship to entry trajectory control, are presented. The entry monitor subsystem is described, and the problems encountered during the developmental phase and the first five manned Apollo flights are discussed in conjunction with the design improvements implemented
Determination of transmitter function by neuronal activity
The role of neuronal activity in the determination of transmitter function was studied in cultures of dissociated sympathetic neurons from newborn rat superior cervical ganglia. Cholinergic and adrenergic differentiation were assayed by incubating the cultures with radioactive choline and tyrosine and determining the rate of synthesis and accumulation of labelled acetylcholine and catecholamines. As in previous studies, pure neuronal cultures grown in control medium displayed much lower ratios of acetylcholine synthesis to catecholamine synthesis than did sister cultures grown in medium previously conditioned by incubation on appropriate nonneuronal cells (conditioned medium). However, here we report that neurons treated with the depolarizing agents elevated K+ or veratridine, or stimulated directly with electrical current, either before or during application of conditioned medium, displayed up to 300-fold lower acetylcholine/catecholamine ratios than they would have without depolarization, and thus remained primarily adrenergic. Elevated K+ and veratridine produced this effect on cholinergic differentiation without significantly altering neuronal survival. Because depolarization causes Ca2+ entry in a number of cell types, the effects of several Ca2+ agonists and antagonists were investigated. In the presence of the Ca2+ antagonists D600 or Mg2+, K+ did not prevent the induction of cholinergic properties by conditioned medium. Thus depolarization, either steady or accompanying activity, is one of the factors determining whether cultured sympathetic neurons become adrenergic or cholinergic, and this effect may be mediated by Ca2+
Radial honeycomb core
Core alleviates many limitations of conventional nacelle construction methods. Radical core, made of metals or nonmetals, is fabricated either by joining nodes and then expanding, or by performing each layer and then joining nodes. Core may also be produced from ribbons or strips with joined nodes or ribbons oriented in longitudinal planes
Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be
a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It
also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We
found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz
and CPT violating coefficients describing the theory are an improvement by factors of 20–510 over the
current best limits found by using the MINOS near detector
Improved Measurement of Muon Antineutrino Disappearance in MINOS
We report an improved measurement of ν̅_μ disappearance over a distance of 735 km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a ν̅_μ-enhanced configuration. From a total exposure of 2.95×10^20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of Δm̅^2=[2.62_(-0.28)^(+0.31)(stat)±0.09(syst)]×10^(-3)  eV^2 and constrain the ν_μ mixing angle sin^(2)(2θ̅)>0.75 (90% C.L.). These values are in agreement with Δm^2 and sin^(2)(2θ) measured for νμ, removing the tension reported in [ P. Adamson et al. Phys. Rev. Lett. 107 021801 (2011)]
Optical and ROSAT X-ray observations of the dwarf nova OY Carinae in superoutburst and quiescence
We present ROSAT X-ray and optical light curves of the 1994 February
superoutburst of the eclipsing SU UMa dwarf nova OY Carinae. There is no
eclipse of the flux in the ROSAT HRI light curve. Contemporaneous `wide B' band
optical light curves show extensive superhump activity and dips at superhump
maximum. Eclipse mapping of these optical light curves reveals a disc with a
considerable physical flare, even three days into the superoutburst decline.
We include a later (1994 July) ROSAT PSPC observation of OY Car that allows
us to put constraints on the quiescent X-ray spectrum. We find that while there
is little to choose between OY Car and its fellow high inclination systems with
regard to the temperature of the emitting gas and the emission measure, we have
difficulties reconciling the column density found from our X-ray observation
with the column found in HST UV observations by Horne et al. (1994). The
obvious option is to invoke time variability.Comment: 16 pages, 14 figures, accepted for publication in MNRA
Feedback in a cavity QED system for control of quantum beats
Conditional measurements on the undriven mode of a two-mode cavity QED system
prepare a coherent superposition of ground states which generate quantum beats.
The continuous system drive induces decoherence through the phase interruptions
from Rayleigh scattering, which manifests as a decrease of the beat amplitude
and an increase of the frequency of oscillation. We report recent experiments
that implement a simple feedback mechanism to protect the quantum beat. We
continuously drive the system until a photon is detected, heralding the
presence of a coherent superposition. We then turn off the drive and let the
superposition evolve in the dark, protecting it against decoherence. At a later
time we reinstate the drive to measure the amplitude, phase, and frequency of
the beats. The amplitude can increase by more than fifty percent, while the
frequency is unchanged by the feedback.Comment: 13 pages, 5 figures, ICAP 2012 23rd International Conference on
Atomic Physic
Band structures of rare gas solids within the GW approximation
Band structures for solid rare gases (Ne, Ar) have been calculated using the
GW approximation. All electron and pseudopotential ab initio calculations were
performed using Gaussian orbital basis sets and the dependence of particle-hole
gaps and electron affinities on basis set and treatment of core electrons is
investigated. All electron GW calculations have a smaller particle-hole gap
than pseudopotential GW calculations by up to 0.2 eV. Quasiparticle electron
and hole excitation energies, valence band widths and electron affinities are
generally in very good agreement with those derived from optical absorption and
photoemission measurements.Comment: 7 pages 1 figur
- …