24 research outputs found

    High prevalence of lack of knowledge of symptoms of acute myocardial infarction inPakistan and its contribution to delayed presentationto the hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted an observational study to determine the delay in presentation to hospital, and its associates among patients experiencing first Acute Myocardial Infarction (AMI) in Karachi, Pakistan.</p> <p>Methods</p> <p>A hospital based cross-sectional study was conducted at National Institute of Cardiovascular Disease (NICVD) in Karachi. A structured questionnaire was used to collect data. The primary outcome was delay in presentation, defined as a time interval of six or more hours from the onset of symptoms to presentation to hospital. Logistic regression analysis was performed to determine the factors associated with prehospital delay.</p> <p>Results</p> <p>A total of 720 subjects were interviewed; 22% were females. The mean age (SD) of the subjects was 54 (± 12) years. The mean (SE) and median (IQR) time to presentation was 12.3 (1.7) hours and 3.04 (6.0) hours respectively. About 34% of the subjects presented late. Lack of knowledge of any of the symptoms of heart attack (odds ratio (95% CI)) (1.82 (1.10, 2.99)), and mild chest pain (10.05 (6.50, 15.54)) were independently associated with prehospital delay.</p> <p>Conclusion</p> <p>Over one-third of patients with AMI in Pakistan present late to the hospital. Lack of knowledge of symptoms of heart attack, and low severity of chest pain were the main predictors of prehospital delay. Strategies to reduce delayed presentation in this population must focus on education about symptoms of heart attack.</p

    Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere

    Get PDF
    Computations carried out on the German Federal Top-Level Computer SuperMUC at LRZ Munich under the contract number pr84na.International audienceThe objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D/2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement

    Influence of socioeconomic factors on medically unnecessary ambulance calls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unnecessary ambulance use has become a socioeconomic problem in Japan. We investigated the possible relations between socioeconomic factors and medically unnecessary ambulance calls, and we estimated the incremental demand for unnecessary ambulance use produced by socioeconomic factors.</p> <p>Methods</p> <p>We conducted a self-administered questionnaire-based survey targeting residents of Yokohama, Japan. The questionnaire included questions pertaining to socioeconomic characteristics, dichotomous choice method questions pertaining to ambulance calls in hypothetical nonemergency situations, and questions on the city's emergency medical system. The probit model was used to analyze the data.</p> <p>Results</p> <p>A total of 2,029 out of 3,363 targeted recipients completed the questionnaire (response rate, 60.3%). Probit regression analyses showed that several demographic and socioeconomic factors influence the decision to call an ambulance. Male respondents were more apt than female respondents to state that they would call an ambulance in nonemergency situations (p < 0.05). Age was an important factor influencing the hypothetical decision to call an ambulance (p < 0.05); elderly persons were more apt than younger persons to state that they would call an ambulance. Possession of a car and hesitation to use an ambulance negatively influenced the hypothetical decision to call an ambulance (p < 0.05). Persons who do not have a car were more likely than those with a car to state that they would call an ambulance in unnecessary situations.</p> <p>Conclusion</p> <p>Results of the study suggest that several socioeconomic factors, i.e., age, gender, household income, and possession of a car, influence a person's decision to call an ambulance in nonemergency situations. Hesitation to use an ambulance and knowledge of the city's primary emergency medical center are likely to be important factors limiting ambulance overuse. It was estimated that unnecessary ambulance use is increased approximately 10% to 20% by socioeconomic factors.</p

    Climate change impacts on human health over Europe through its effect on air quality

    Get PDF
    Abstract This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH4) abundances lead to increases in background O3 that offset the O3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NOx), elevated surface temperatures and humidities yield increases in surface O3 – termed the O3 climate penalty – especially in southern Europe. The O3 response is larger for metrics that represent the higher end of the O3 distribution, such as daily maximum O3. Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100. A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O3 have been identified. There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O3-related health burdens in polluted populated regions and greater PM2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O3-respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH4 leads to global and European excess O3-respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk

    Concentration-response function for ozone and daily mortality: results from five urban and five rural U.K. populations.

    Get PDF
    BACKGROUND: Short-term exposure to ozone has been associated with increased daily mortality. The shape of the concentration-response relationship-and, in particular, if there is a threshold-is critical for estimating public health impacts. OBJECTIVE: We investigated the concentration-response relationship between daily ozone and mortality in five urban and five rural areas in the United Kingdom from 1993 to 2006. METHODS: We used Poisson regression, controlling for seasonality, temperature, and influenza, to investigate associations between daily maximum 8-hr ozone and daily all-cause mortality, assuming linear, linear-threshold, and spline models for all-year and season-specific periods. We examined sensitivity to adjustment for particles (urban areas only) and alternative temperature metrics. RESULTS: In all-year analyses, we found clear evidence for a threshold in the concentration-response relationship between ozone and all-cause mortality in London at 65 µg/m3 [95% confidence interval (CI): 58, 83] but little evidence of a threshold in other urban or rural areas. Combined linear effect estimates for all-cause mortality were comparable for urban and rural areas: 0.48% (95% CI: 0.35, 0.60) and 0.58% (95% CI: 0.36, 0.81) per 10-µg/m3 increase in ozone concentrations, respectively. Seasonal analyses suggested thresholds in both urban and rural areas for effects of ozone during summer months. CONCLUSIONS: Our results suggest that health impacts should be estimated across the whole ambient range of ozone using both threshold and nonthreshold models, and models stratified by season. Evidence of a threshold effect in London but not in other study areas requires further investigation. The public health impacts of exposure to ozone in rural areas should not be overlooked

    Longer pre-hospital delay in first myocardial infarction among patients with diabetes : an analysis of 4266 patients in the Northern Sweden MONICA Study

    Get PDF
    Background: Reperfusion therapy reduces both morbidity and mortality in myocardial infarction, but the effectiveness depends on how fast the patient receives treatment. Despite the time-dependent effectiveness of reperfusion therapy, many patients with myocardial infarction have delays in seeking medical care. The aim of this study was to describe pre-hospital delay in a first myocardial infarction among men and women with and without diabetes and to describe the association between pre-hospital delay time and diabetes, sex, age, symptoms and size of residential area as a proxy for distance to hospital. Methods: This population based study was based on data from 4266 people aged 25-74 years, with a first myocardial infarction registered in the Northern Sweden MONICA myocardial infarction registry between 2000 and 2008. Results: The proportion of patients with delay times &gt;= 2 h was 64% for patients with diabetes and 58% for patients without diabetes. There was no difference in delay time &gt;= 2 h between men and women with diabetes. Diabetes, older age and living in a town or rural areas were factors associated with pre-hospital delay times &gt;= 2 h. Atypical symptoms were not a predictor for pre-hospital delay times &gt;= 2 h, OR 0.59 (0.47; 0.75). Conclusions: A higher proportion of patients with diabetes have longer pre-hospital delay in myocardial infarction than patients without diabetes. There are no differences in pre-hospital delay between men and women with diabetes. The largest risk difference for pre-hospital delay &gt;= 2 h is between women with and without diabetes. Diabetes, older age and living in a town or rural area are predictors for pre-hospital delay &gt;= 2 h
    corecore