9 research outputs found

    Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene <i>Nr4a3</i>

    No full text
    Exercise training triggers numerous positive adaptations through the regulation of genes controlling muscle structure and function. Epigenetic modifications, including DNA methylation, participate in transcriptional activation by allowing the recruitment of the transcription machinery to gene promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest fold-expression increase after acute exercise. We then refined an electrical pulse stimulation (EPS) protocol that could induce expression of the Nr4a3 gene in C2C12 myotubes. Using targeted bisulfite sequencing, we found that in response to EPS, a region of the Nr4a3 promoter is rapidly demethylated at 60 min and re-methylated at 120 min. Of interest, hydroxymethylation of the differentially methylated region of Nr4a3 promoter after EPS was elevated immediately after EPS, with lowest levels reached at 60 min after EPS. In conclusion, we have established a cell culture-based protocol to mimic the acute transcriptional responses to exercise. Furthermore, we provide insight into the mechanism by which the exercise-responsive gene Nr4a3 is demethylated after muscle contraction

    Additional file 6: Tables S1 – S4. of Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots

    No full text
    Differences in sRNA expression profiles in the spermatozoa between the Untrained, Trained and Detrained state. miRNAs, piRNAs, Repetitive Elements, tRNAs and mRNA fragments differentially expressed between Untrained and Trained, Trained and Detrained, Untrained and Detrained. logFC: Log2 Fold Change; logCPM: Log2 counts per million; LR: Likelihood ratio; feature: sRNA name; FDR: False Discovery Rate. (ZIP 1010 kb

    Additional file 5: Figure S6. of Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots

    No full text
    Boxplot of the expression levels of selected subsets of sRNA (miRNA, green; tRNA, red; piRNA, purple) are presented at the three different time points for each individual. Data are presented as log-transformed sequence reads per million (1 = Untrained, 2 = Trained, 3 = Detrained). (TIFF 973 kb
    corecore