26 research outputs found

    Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe

    Full text link
    In a previous work we analysed the white-light coronal brightness as a function of elongation and time from Wide-Field Imager (WISPR) observations on board the Parker Solar Probe (PSP) mission when PSP reached a minimum heliocentric distance of ~ 28 Rs. We found 4-5 transient outflows per day over a narrow wedge in the PSP orbital plane, which is close to the solar equatorial plane. However, the elongation versus time map (J-map) analysis supplied only lower limits on the number of released density structures due to the small spatial-scales of the transient outflows and line-of-sight integration effects. In this work we place constraints on the properties of slow solar wind transient mass release from the entire solar equatorial plane. We simulated the release and propagation of transient density structures in the solar equatorial plane for four scenarios: (1) periodic release in time and longitude with random speeds; (2) corotating release in longitude, periodic release in time with random speeds; (3) random release in longitude, periodic release in time and speed; and (4) random release in longitude, time, and speed. The simulations were used in the construction of synthetic J-maps, which are similar to the observed J-map. The four considered scenarios have similar ranges (35-45 for the minimum values and 96-127 for the maximum values) of released density structures per day from the solar equatorial plane and consequently from the streamer belt, given its proximity to the solar equatorial plane during the WISPR observation. Our results also predict that density structures with sizes in the range 2-8 Rs, covering 1-20 % of the perihelion could have been detectable by PSP in situ observations during that interval.Comment: A&A, 2023, in pres

    Intensity Conserving Spectral Fitting

    Full text link
    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.Comment: 9 pages, 7 figures, 1 table; submitted to Astrophysical Journal (revised version

    How Magnetic Erosion Affects the Drag-Based Kinematics of Fast Coronal Mass Ejections

    Full text link
    In order to advance our understanding of the dynamic interactions between coronal mass ejections (CMEs) and the magnetized solar wind, we investigate the impact of magnetic erosion on the well-known aerodynamic drag force acting on CMEs traveling faster than the ambient solar wind. In particular, we start by generating empirical relationships for the basic physical parameters of CMEs that conserve their mass and magnetic flux. Furthermore, we examine the impact of the virtual mass on the equation of motion by studying a variable-mass system. We next implement magnetic reconnection into CME propagation, which erodes part of the CME magnetic flux and outer-shell mass, on the drag acting on CMEs, and we determine its impact on their time and speed of arrival at 1 AU. Depending on the strength of the magnetic erosion, the leading edge of the magnetic structure can reach near-Earth space up to ≈\approx three hours later, compared to the non-eroded case. Therefore, magnetic erosion may have a significant impact on the propagation of fast CMEs and on predictions of their arrivals at 1 AU. Finally, the modeling indicates that eroded CMEs may experience a significant mass decrease. Since such a decrease is not observed in the corona, the initiation distance of erosion may lie beyond the field-of-view of coronagraphs (i.e. 30 R⊙\mathrm{R_{\odot}})

    'EUV Waves' are Waves: First Quadrature Observations of an EUV Wave from STEREO

    Full text link
    The nature of CME-associated low corona propagating disturbances, 'EUV waves', has been controversial since their discovery by EIT on \textit{SOHO}. The low cadence, single viewpoint EUV images and the lack of simultaneous inner corona white light observations has hindered the resolution of the debate on whether they are true waves or just projections of the expanding CME. The operation of the twin EUV imagers and inner corona coronagraphs aboard \textsl{STEREO} has improved the situation dramatically. During early 2009, the \textsl{STEREO} Ahead (STA) and Behind (STB) spacecraft observed the Sun in quadrature having an ≈90∘\approx 90^\circ angular separation. An EUV wave and CME erupted from active region 11012, on February 13, when the region was exactly at the limb for STA and hence at disk center for STB. The \textit{STEREO} observations capture the development of a CME and its accompanying EUV wave not only with high cadence but also in quadrature. The resulting unprecentented dataset allowed us to separate the CME structures from the EUV wave signatures and to determine without doubt the true nature of the wave. It is a fast-mode MHD wave after all!Comment: ApJL, 2009, submitte

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio
    corecore