8 research outputs found

    The dark side of stemness – the role of hematopoietic stem cells in development of blood malignancies

    Get PDF
    Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs

    Secretory leukocyte protease inhibitor regulates nerve reflex-mediated skin barrier function in psoriasis

    No full text
    BACKGROUND: Secretory leukocyte protease inhibitor (SLPI), a ~12 kDa protein is an important regulator of innate and adaptive immunity and a component of tissue regenerative programmes. SLPI expression is markedly elevated in chronically inflamed skin, including that of individuals suffering from psoriasis. However, the role of SLPI in these diseases remains elusive. OBJECTIVES: The poor understanding of the early stages of the development of psoriasis is a major obstacle to successful intervention in the skin pathology. We hypothesized that SLPI and peripheral nerves that might be activated early in the progression of the disease likely form a functional relationship to maintain skin barrier homeostasis and respond to a variety of threats. METHODS: We used skin biopsies of healthy donors and individuals with psoriasis to show expression pattern of SLPI. A role of SLPI in psoriasis was mechanistically assessed using SLPI‐deficient mice and an imiquimod (IMQ)‐induced experimental model of psoriasis. RESULTS: We show that mice lacking SLPI had exaggerated skin alterations that extended beyond the treatment site in an imiquimod‐induced psoriasis. The spatiotemporally distinct skin responses in SLPI‐deficient mice, compared to their wild‐type littermates, resulted from a compromised skin barrier function that manifested itself in heightened transepidermal water loss through the larger skin area surrounding the IMQ‐challenged skin. The increased pathogenic skin changes in the absence of SLPI were reversible through pharmacological treatment that blocks a nerve‐reflex arc. CONCLUSIONS: Together, these data indicate that SLPI plays a protective role in psoriasis through preventing skin dryness, inherent in the pathogenesis of psoriasis and that this SLPI action depends on neuronal input operating in a reflex manner. These findings reveal a previously unrecognized mechanism that maintains cutaneous homeostasis, which involves a crosstalk between the nervous system and a protein anatomically poised to fortify the epidermal permeability barrier

    Molecular mechanisms of ZC3H12C/Reg-3 biological activity and its involvement in Psoriasis pathology

    No full text
    The members of the ZC3H12/MCPIP/Regnase family of RNases have emerged as important regulators of inflammation. In contrast to Regnase-1, -2 and -4, a thorough characterization of Regnase-3 (Reg-3) has not yet been explored. Here we demonstrate that Reg-3 differs from other family members in terms of NYN/PIN domain features, cellular localization pattern and substrate specificity. Together with Reg-1, the most comprehensively characterized family member, Reg-3 shared IL-6, IER-3 and Reg-1 mRNAs, but not IL-1 beta mRNA, as substrates. In addition, Reg-3 was found to be the only family member which regulates transcript levels of TNF, a cytokine implicated in chronic inflammatory diseases including psoriasis. Previous meta-analysis of genome-wide association studies revealed Reg-3 to be among new psoriasis susceptibility loci. Here we demonstrate that Reg-3 transcript levels are increased in psoriasis patient skin tissue and in an experimental model of psoriasis, supporting the immunomodulatory role of Reg-3 in psoriasis, possibly through degradation of mRNA for TNF and other factors such as Reg-1. On the other hand, Reg-1 was found to destabilize Reg-3 transcripts, suggesting reciprocal regulation between Reg-3 and Reg-1 in the skin. We found that either Reg-1 or Reg-3 were expressed in human keratinocytes in vitro. However, in contrast to robustly upregulated Reg-1 mRNA levels, Reg-3 expression was not affected in the epidermis of psoriasis patients. Taken together, these data suggest that epidermal levels of Reg-3 are negatively regulated by Reg-1 in psoriasis, and that Reg-1 and Reg-3 are both involved in psoriasis pathophysiology through controlling, at least in part different transcripts
    corecore