25 research outputs found

    Nonaaqua­praseodymium triiodide–thio­urea (1/2)

    Get PDF
    The title compound, [Pr(H2O)9]I3·2CS(NH2)2, an adduct of nona­aqua­praseodymium triiodide with two thio­urea mol­ecules, is composed from [Pr(H2O)9]3+ cations (polyhedron: monocapped tetra­gonal anti­prism), noncoordinated thio­urea mol­ecules and iodide anions. The components are evidently connected by hydrogen bonds but in the presence of heavy atoms water H atoms have not been located. The complex cation and one of the two independent iodide anions are located on a twofold axis

    Plasmonic Nanorod Antenna Array: Analysis in Reflection and Transmission

    No full text
    Gold nanorod antenna arrays provide ultra strong plasmonic field enhancement and a superb broadband spectral tunability, as needed, for example, for label -free biosensing, surface -enhanced Raman spectroscopy, or optical filter design. The key issue when integrating such nanorod substrates is the question whether the plasmonic properties are superior to be applied in reflection or transmission geometry, which clearly needs a thorough analysis. Here we provide a complete and fundamental experimental and theoretical investigation of such gold nanorod antenna arrays embedded in an anodized aluminum oxide matrix. We show that the excitation of individual and coupled plasmonic eigenmodes in such nanorod arrays under an oblique angle of incidence provides an efficient tool for tuning the photonic response for both reflection and transmission applications. Moreover, simultaneous recording of the transmitted and reflected intensities under s- and p -polarization for angles ranging from 0 to 80 degrees over the whole visible wavelength range allows us, for the first time, to quantify also the absorptive losses in these embedded gold nanorod antenna arrays
    corecore