46 research outputs found

    Production of nanoparticles, of powders and setup of components for power equipment

    Get PDF
    The paper presents ways to produce magnetic nanoparticles to be incorporated into magneto-bioelectronic devices where chemical processing must control composition, microstructure, phase purity, particle morphology, and control size particle, thereby reducing particle aggregation and size distribution. The methods of synthesis of magnetic nanoparticles are analyzed: physical vapor deposition, mechanical and chemical synthesis in the solution. Solution synthesis offers advantages: easy control of the size and composition of the particles, possibilities to change the surface in order to obtain a stable dispersion in different solid or liquid media. The properties of nanoscale powders, nanostructured materials and nanoparticles in solution are strongly dependent on particle size, and their dispersion state. Laboratory syntheses have been performed by analyzing the methods of synthesis of nanometric magnetic particle

    Influence of the physical properties on the antibacterial and photocatalytic behavior of Ag-doped indium sulfide film deposited by spray pyrolysis

    Get PDF
    Spray pyrolysis was used to deposit indium sulfide (In2S3) films, with or without silver doping. The films are polycrystalline, and the inclusion of Ag in the In2S3 structure leads to the formation of a solid solution, with the crystallite size of the order of tens of nanometers. In2S3 films exhibit a semiconductive behavior, and the incorporation of Ag leads to an increase of the charge carrier concentration, enhancing the electrical conductivity of the films. The small polaron hopping mechanism, deduced by the fittings according to the double Jonscher variation, explains the evolution of the direct current (dc) conductivity at high temperature of the Ag-doped indium sulfide. From impedance spectroscopy, it was found that the doped film presents dielectric relaxation, and Nyquist diagrams indicate the importance of the grain and the grain boundaries’ contributions to the transport phenomena. The physical characteristics of the films have an influence on the photocatalytic performance, achieving photodegradation efficiency above 80% (85.5% in the case of Ag doping), and on the antibacterial activity. The obtained results indicate that indium sulfide films are good candidates for environmental and biological applications, confirming a multifunctional nature.Part of this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020”. D.C. and I.G. acknowledge the structural funds project PRO-DD (POS-CCE, O.2.2.1., ID123, SMIS 2637, ctr. no 11/2009) for providing some of the infrastructure used in this work. Part of this work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-1209, within PNCDI III

    Ti-Zr-Si-Nb nanocrystalline alloys and metallic glasses: Assessment on the structure, thermal stability, corrosion and mechanical properties

    Get PDF
    The development of novel Ti-based amorphous or \u3b2-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young's modulus, better wear performance, improved fracture toughness) in comparison to the standardized \u3b1+\u3b2 titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young's modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications

    Fall 1

    No full text

    Characteristics and treatment of rheumatic irAEs due to immune checkpoint inhibitor therapy

    No full text
    corecore