5 research outputs found

    Size-Independent Energy Transfer in Biomimetic Nanoring Complexes

    No full text
    Supramolecular antenna-ring complexes are of great interest due to their presence in natural light-harvesting complexes. While such systems are known to provide benefits through robust and efficient energy funneling, the relationship between molecular structure, strain (governed by nuclear coordinates and motion), and energy dynamics (arising from electronic behavior) is highly complex. We present a synthetic antenna-nanoring system based on a series of conjugated porphyrin chromophores ideally suited to explore such effects. By systematically varying the size of the acceptor nanoring, we reveal the interplay between antenna-nanoring binding, local strain, and energy dynamics on the picosecond time scale. Binding of the antenna unit creates a local strain in the nanoring, and this strain was measured as a function of the size of the nanoring, by UV–vis-NIR titration, providing information on the conformational flexibility of the system. Strikingly, the energy-transfer rate is independent of nanoring size, indicating the existence of strain-localized acceptor states, spread over about six porphyrin units, arising from the noncovalent antenna-nanoring association

    Three-Dimensional in Situ Photocurrent Mapping for Nanowire Photovoltaics

    No full text
    Devices based upon semiconductor nanowires provide many well-known advantages for next-generation photovoltaics, however, limited experimental techniques exist to determine essential electrical parameters within these devices. We present a novel application of a technique based upon two-photon induced photocurrent that provides a submicrometer resolution, three-dimensional reconstruction of photovoltaic parameters. This tool is used to characterize two GaAs nanowire-based devices, revealing the detail of current generation and collection, providing a path toward achieving the promise of nanowire-based photovoltaic devices

    Polarization Tunable, Multicolor Emission from Core–Shell Photonic III–V Semiconductor Nanowires

    No full text
    We demonstrate luminescence from both the core and the shell of III–V semiconductor photonic nanowires by coupling them to plasmonic silver nanoparticles. This demonstration paves the way for increasing the quantum efficiency of large surface area nanowire light emitters. The relative emission intensity from the core and the shell is tuned by varying the polarization of the excitation source since their polarization response can be independently controlled. Independent control on emission wavelength and polarization dependence of emission from core–shell nanowire heterostructures opens up opportunities that have not yet been imagined for nanoscale polarization sensitive, wavelength-selective, or multicolor photonic devices based on single nanowires or nanowire arrays

    Ultrafast Transient Terahertz Conductivity of Monolayer MoS<sub>2</sub> and WSe<sub>2</sub> Grown by Chemical Vapor Deposition

    No full text
    We have measured ultrafast charge carrier dynamics in monolayers and trilayers of the transition metal dichalcogenides MoS<sub>2</sub> and WSe<sub>2</sub> using a combination of time-resolved photoluminescence and terahertz spectroscopy. We recorded a photoconductivity and photoluminescence response time of just 350 fs from CVD-grown monolayer MoS<sub>2</sub>, and 1 ps from trilayer MoS<sub>2</sub> and monolayer WSe<sub>2</sub>. Our results indicate the potential of these materials as high-speed optoelectronic materials

    Distinct Photocurrent Response of Individual GaAs Nanowires Induced by n-Type Doping

    No full text
    The doping-dependent photoconductive properties of individual GaAs nanowires have been studied by conductive atomic force microscopy. Linear responsivity against the bias voltage is observed for moderate n-doped GaAs wires with a Schottky contact under illumination, while that of the undoped ones exhibits a saturated response. The carrier lifetime of a single nanowire can be obtained by simulating the characteristic photoelectric behavior. Consistent with the photoluminescence results, the significant drop of minority hole lifetime, from several hundred to subpicoseconds induced by n-type doping, leads to the distinct photoconductive features. Moreover, by comparing with the photoelectric behavior of AlGaAs shelled nanowires, the equivalent recombination rate of carriers at the surface is assessed to be >1 × 10<sup>12</sup> s<sup>–1</sup> for 2 × 10<sup>17</sup>cm<sup>–3</sup> n-doped bare nanowires, nearly 30 times higher than that of the doping-related bulk effects. This work suggests that intentional doping in nanowires could change the charge status of the surface states and impose significant impact on the electrical and photoelectrical performances of semiconductor nanostructures
    corecore