215 research outputs found
Maternal Predator Odor Exposure in Mice Programs Adult Offspring Social Behavior and Increases Stress-Induced Behaviors in Semi-Naturalistic and Commonly-Used Laboratory Tasks
Maternal stress has a profound impact on the long-term behavioral phenotype of offspring, including behavioral responses to stressful and social situations. In this study, we examined the effects of maternal exposure to predator odor, an ethologically relevant psychogenic stressor, on stress-induced behaviors in both semi-naturalistic and laboratory-based situations. Adult C57BL/6 mice offspring of dams exposed to predator odor during the last half of pregnancy showed increased anti-predatory behavior, more cautious foraging behavior and, in the elevated plus maze, avoidance of elevated open areas and elevated open areas following restraint stress challenge. These offspring also exhibited alterations in social behavior including reduced free interaction and increased initial investigation despite normal social recognition. These changes in behavior were associated with increased transcript abundance of corticotropin-releasing factor, mineralocorticoid receptor and oxytocin (Oxt) in the periventricular nucleus of the hypothalamus. Taken together, the findings are consistent with a long-term increase in ethologically-relevant behavioral and neural responses to stress in male and female offspring as a function of maternal predator odor exposure
The Neurological Ecology of Fear: Insights Neuroscientists and Ecologists Have to Offer one Another
That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.
Promoter-Wide Hypermethylation of the Ribosomal RNA Gene Promoter in the Suicide Brain
BACKGROUND: Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS: We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE: This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide
Direct Measurement of Nuclear Dependence of Charged Current Quasielastic-like Neutrino Interactions using MINERvA
Charged-current interactions on carbon, iron, and lead with a
final state hadronic system of one or more protons with zero mesons are used to
investigate the influence of the nuclear environment on quasielastic-like
interactions. The transfered four-momentum squared to the target nucleus,
, is reconstructed based on the kinematics of the leading proton, and
differential cross sections versus and the cross-section ratios of iron,
lead and carbon to scintillator are measured for the first time in a single
experiment. The measurements show a dependence on atomic number. While the
quasielastic-like scattering on carbon is compatible with predictions, the
trends exhibited by scattering on iron and lead favor a prediction with
intranuclear rescattering of hadrons accounted for by a conventional particle
cascade treatment. These measurements help discriminate between different
models of both initial state nucleons and final state interactions used in the
neutrino oscillation experiments
First evidence of coherent meson production in neutrino-nucleus scattering
Neutrino-induced charged-current coherent kaon production,
, is a rare, inelastic electroweak process
that brings a on shell and leaves the target nucleus intact in its ground
state. This process is significantly lower in rate than neutrino-induced
charged-current coherent pion production, because of Cabibbo suppression and a
kinematic suppression due to the larger kaon mass. We search for such events in
the scintillator tracker of MINERvA by observing the final state ,
and no other detector activity, and by using the kinematics of the final state
particles to reconstruct the small momentum transfer to the nucleus, which is a
model-independent characteristic of coherent scattering. We find the first
experimental evidence for the process at significance.Comment: added ancillary file with information about the six kaon candidate
Single neutral pion production by charged-current interactions on hydrocarbon at 3.6 GeV
Single neutral pion production via muon antineutrino charged-current
interactions in plastic scintillator (CH) is studied using the \minerva
detector exposed to the NuMI low-energy, wideband antineutrino beam at
Fermilab. Measurement of this process constrains models of neutral pion
production in nuclei, which is important because the neutral-current analog is
a background for appearance oscillation experiments. The
differential cross sections for momentum and production angle, for
events with a single observed and no charged pions, are presented and
compared to model predictions. These results comprise the first measurement of
the kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters
MINERvA neutrino detector response measured with test beam data
The MINERvA collaboration operated a scaled-down replica of the solid
scintillator tracking and sampling calorimeter regions of the MINERvA detector
in a hadron test beam at the Fermilab Test Beam Facility. This article reports
measurements with samples of protons, pions, and electrons from 0.35 to 2.0
GeV/c momentum. The calorimetric response to protons, pions, and electrons are
obtained from these data. A measurement of the parameter in Birks' law and an
estimate of the tracking efficiency are extracted from the proton sample.
Overall the data are well described by a Geant4-based Monte Carlo simulation of
the detector and particle interactions with agreements better than 4%, though
some features of the data are not precisely modeled. These measurements are
used to tune the MINERvA detector simulation and evaluate systematic
uncertainties in support of the MINERvA neutrino cross section measurement
program.Comment: as accepted by NIM
- …