214 research outputs found

    Maternal Predator Odor Exposure in Mice Programs Adult Offspring Social Behavior and Increases Stress-Induced Behaviors in Semi-Naturalistic and Commonly-Used Laboratory Tasks

    Get PDF
    Maternal stress has a profound impact on the long-term behavioral phenotype of offspring, including behavioral responses to stressful and social situations. In this study, we examined the effects of maternal exposure to predator odor, an ethologically relevant psychogenic stressor, on stress-induced behaviors in both semi-naturalistic and laboratory-based situations. Adult C57BL/6 mice offspring of dams exposed to predator odor during the last half of pregnancy showed increased anti-predatory behavior, more cautious foraging behavior and, in the elevated plus maze, avoidance of elevated open areas and elevated open areas following restraint stress challenge. These offspring also exhibited alterations in social behavior including reduced free interaction and increased initial investigation despite normal social recognition. These changes in behavior were associated with increased transcript abundance of corticotropin-releasing factor, mineralocorticoid receptor and oxytocin (Oxt) in the periventricular nucleus of the hypothalamus. Taken together, the findings are consistent with a long-term increase in ethologically-relevant behavioral and neural responses to stress in male and female offspring as a function of maternal predator odor exposure

    The Neurological Ecology of Fear: Insights Neuroscientists and Ecologists Have to Offer one Another

    Get PDF
    That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.

    Promoter-Wide Hypermethylation of the Ribosomal RNA Gene Promoter in the Suicide Brain

    Get PDF
    BACKGROUND: Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS: We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE: This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide

    Direct Measurement of Nuclear Dependence of Charged Current Quasielastic-like Neutrino Interactions using MINERvA

    Get PDF
    Charged-current νμ\nu_{\mu} interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielastic-like interactions. The transfered four-momentum squared to the target nucleus, Q2Q^2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2Q^2 and the cross-section ratios of iron, lead and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on atomic number. While the quasielastic-like scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments

    First evidence of coherent K+K^{+} meson production in neutrino-nucleus scattering

    Get PDF
    Neutrino-induced charged-current coherent kaon production, νμA→μ−K+A\nu_{\mu}A\rightarrow\mu^{-}K^{+}A, is a rare, inelastic electroweak process that brings a K+K^+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+K^+, μ−\mu^- and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ3\sigma significance.Comment: added ancillary file with information about the six kaon candidate

    Single neutral pion production by charged-current νˉμ\bar{\nu}_\mu interactions on hydrocarbon at ⟨Eν⟩=\langle E_\nu \rangle = 3.6 GeV

    Get PDF
    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for νˉe\bar{\nu}_e appearance oscillation experiments. The differential cross sections for π0\pi^0 momentum and production angle, for events with a single observed π0\pi^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0\pi^0 kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM
    • …
    corecore