3 research outputs found

    Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy

    No full text
    Driven by the desire to understand energy transfer between plasmonic and catalytic metals for applications such as plasmon-mediated catalysis, we examine the spatially resolved electron energy-loss spectra (EELS) of both pure Au nanoprisms and Pt-decorated Au nanoprisms. The EEL spectra and the resulting surface-plasmon mode maps reveal detailed near-field information on the coupling and energy transfer in these systems, thereby elucidating the underlying mechanism of plasmon-driven chemical catalysis in mixed-metal nanostructures. Through a combination of experiment and theory we demonstrate that although the location of the Pt decoration greatly influences the plasmons of the nanoprism, simple spatial proximity is not enough to induce significant energy transfer from the Au to the Pt. What matters more is the spectral overlap between the intrinsic plasmon resonances of the Au nanoprism and Pt decoration, which can be tuned by changing the composition or morphology of either component

    Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS

    No full text
    Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmonā€“semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices

    Ligand-Mediated ā€œTurn On,ā€ High Quantum Yield Near-Infrared Emission in Small Gold Nanoparticles

    No full text
    Small gold nanoparticles (āˆ¼1.4ā€“2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 Ā± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 Ī¼s, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (AuĀ­(I)ī—øSī—øR)<sub><i>n</i></sub> impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures
    corecore