22,980 research outputs found

    Skew critical problems

    Full text link
    Skew critical problems occur in continuous and discrete nonholonomic Lagrangian systems. They are analogues of constrained optimization problems, where the objective is differentiated in directions given by an apriori distribution, instead of tangent directions to the constraint. We show semiglobal existence and uniqueness for nondegenerate skew critical problems, and show that the solutions of two skew critical problems have the same contact as the problems themselves. Also, we develop some infrastructure that is necessary to compute with contact order geometrically, directly on manifolds

    Crystal structure, thermodynamics, magnetics and disorder properties of Be-Fe-Al intermetallics

    Full text link
    The elastic and magnetic properties, thermodynamical stability, deviation from stoichiometry and order/disorder transformations of phases that are relevant to Be alloys were investigated using density functional theory simulations coupled with phonon density of states calculations to capture temperature effects. A novel structure and composition were identified for the Be-Fe binary {\epsilon} phase. In absence of Al, FeBe_5 is predicted to form at equilibrium above ~ 1250 K, while the {\epsilon} phase is stable only below ~ 1650 K, and FeBe_2 is stable at all temperatures below melting. Small additions of Al are found to stabilise FeBe_5 over FeBe_2 and {\epsilon}, while at high Al content, AlFeBe_4 is predicted to form. Deviations from stoichiometric compositions are also considered and found to be important in the case of FeBe_5 and {\epsilon}. The propensity for disordered vs ordered structures is also important for AlFeBe_4 (which exhibits complete Al-Fe disordered at all temperatures) and FeBe_5 (which exhibits an order-disorder transition at ~ 950 K).Comment: 14 pages, 10 figures, accepted for publication in J. Alloy Compd. on 14 March 201

    Linear magnetoresistance in metals: guiding center diffusion in a smooth random potential

    Get PDF
    We predict that guiding center (GC) diffusion yields a linear and non-saturating (transverse) magnetoresistance in 3D metals. Our theory is semi-classical and applies in the regime where the transport time is much greater than the cyclotron period, and for weak disorder potentials which are slowly varying on a length scale much greater than the cyclotron radius. Under these conditions, orbits with small momenta along magnetic field BB are squeezed and dominate the transverse conductivity. When disorder potentials are stronger than the Debye frequency, linear magnetoresistance is predicted to survive up to room temperature and beyond. We argue that magnetoresistance from GC diffusion explains the recently observed giant linear magnetoresistance in 3D Dirac materials

    Neglected Dimensions of Global Security: The Global Health Risk Framework Commission

    Get PDF
    The world has experienced global health crises ranging from novel influenzas (H5N1 and H1N1) and coronaviruses (SARS and MERS) to the Ebola and Zika viruses. In each case, governments and international organizations seemed unable to react quickly and decisively. Health crises have unmasked critical vulnerabilities— weak health systems, failures of leadership, and political overreaction and underreaction. The Global Health Risk Framework Commission, for which the National Academy of Medicine served as the secretariat, recently set out a comprehensive strategy to safeguard human and economic security from pandemic threats

    Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection

    Get PDF
    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and 2MASS databases, the WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation from free-free scattering within their dense ionized winds. The selection criteria has been refined since our last report, and now yields WRs at a rate of ~20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B>14 mag. However, there are subregions within the broad color space which yield WRs at a rate of >50%. Cross-correlation of WR candidates with archival X-ray point-source catalogs increases the WR detection rate of the broad color space to ~40%; ten new WR X-ray sources have been found, in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster that lies near the intersection of the Scutum-Centaurus Arm and the Galaxy's bar, in which five OB supergiants were also identified. In addition, two WC and four WN stars were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work brings the total number of known Galactic WRs to 476, or ~7-8% of the total empirically estimated population. An examination of their Galactic distribution reveals a tracing of spiral arms and an enhanced WR surface density toward several massive-star formation sites (abridged).Comment: Accepted to the Astronomical Journal on May 20, 2011. Document is 39 pages, including 20 figures and 8 table

    Robustness of Majorana Fermion induced Fractional Josephson Effect

    Full text link
    It is shown in previous works that the coupling between two Majorana end states in superconducting quantum wires leads to fractional Josephson effect. However, in realistic experimental conditions, multiple bands of the wires are occupied and the Majorana end states are accompanied by other fermionic end states. This raises the question concerning the robustness of fractional Josephson effect in these situations. In this work, we show that the absence of the avoided energy crossing which gives rise to the fractional Josephson effect is robust, even when the Majorana fermions are coupled with arbitrary strengths to other fermions. Moreover, we calculate the temperature dependence of the fractional Josephson current and show that it is suppressed by thermal excitations to the other fermion bound states.Comment: 4+ pages, 3 figure

    Intercomparisons of GOES-derived cloud parameters and surface observations over San Nicolas Island

    Get PDF
    The spatial sampling limitations of surface measurement systems necessitate the use of satellite data for the investigation of large-scale cloud processes. Understanding the information contained in the satellite-observed radiances, however, requires a connection between the remotely sensed cloud properties and those more directly observed within the troposphere. Surface measurements taken during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observations (IFO) are compared here to cloud properties determined from Geostationary Operational Environmental Satellite (GOES) data in order to determine how well the island measurements represent larger areas and to verify some of the satellite-measured parameters
    • …
    corecore