3 research outputs found

    Understanding and Capturing People’s Privacy Policies in a People Finder Application

    No full text
    A number of mobile applications have emerged that allow users to locate one another. However, people have expressed concerns about the privacy implications associated with this class of software, suggesting that broad adoption may only happen to the extent that these concerns are adequately addressed. In this article, we report on our work on PEOPLEFINDER, an application that enables cell phone and laptop users to selectively share their locations with others (e.g. friends, family, and colleagues). The objective of our work has been to better understand people’s attitudes and behaviors towards privacy as they interact with such an application, and to explore technologies that empower users to more effectively and efficiently specify their privacy preferences (or “policies”). These technologies include user interfaces for specifying rules and auditing disclosures, as well as machine learning techniques to see if the system can help people manage their policies better. We present evaluations of these technologies in the context of one laboratory study and three field studies

    Measuring Password Guessability for an Entire University (CMU-CyLab-13-013)

    No full text
    <p>Despite considerable research on passwords, empirical studies of password strength have been limited by lack of access to plaintext passwords, small data sets, and password sets specifically collected for a research study or from low-value accounts. Properties of passwords used for high-value accounts thus remain poorly understood. We fill this gap by studying the single-sign-on passwords used by over 25,000 faculty, staff, and students at a research university with a complex password policy. Key aspects of our contributions rest on our (indirect) access to plaintext passwords. We describe our data collection methodology, particularly the many precautions we took to minimize risks to users. We then analyze how guessable the collected passwords would be during an offline attack by subjecting them to a state-of-the-art password cracking algorithm. We discover significant correlations between a number of demographic and behavioral factors and password strength. For example, we find that users associated with the computer science school make passwords more than 1.8 times as strong as those of users associated with the business school. In addition, we find that stronger passwords are correlated with a higher rate of errors entering them. We also compare the guessability and other characteristics of the passwords we analyzed to sets previously collected in controlled experiments or leaked from low-value accounts. We find more consistent similarities between the university passwords and passwords collected for research studies under similar composition policies than we do between the university passwords and subsets of passwords leaked from low-value accounts that happen to comply with the same policies.</p

    Guess again (and again and again): Measuring password strength by simulating password-cracking algorithms (CMU-CyLab-11-008)

    No full text
    Text-based passwords remain the dominant authentication method in computer systems, despite significant advancement in attackers’ capabilities to perform password cracking. In response to this threat, password composition policies have grown increasingly complex. However, there is insufficient research defining metrics to characterize password strength and evaluating password-composition policies using these metrics. In this paper, we describe an analysis of 12,000 passwords collected under seven composition policies via an online study. We develop an efficient distributed method for calculating how effectively several heuristic password-guessing algorithms guess passwords. Leveraging this method, we investigate (a) the resistance of passwords created under different conditions to password guessing; (b) the performance of guessing algorithms under different training sets; (c) the relationship between passwords explicitly created under a given composition policy and other passwords that happen to meet the same requirements; and (d) the relationship between guessability, as measured with password-cracking algorithms, and entropy estimates. We believe our findings advance understanding of both password-composition policies and metrics for quantifying password security.</p
    corecore