35 research outputs found

    Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line

    Get PDF
    The mouse macrophage-like cell line RAW264.7, the most commonly used mouse macrophage cell line in medical research, was originally reported to be free of replication-competent murine leukemia virus (MuLV) despite its origin in a tumor induced by Abelson MuLV containing Moloney MuLV as helper virus. As currently available, however, we find that it produces significant levels of ecotropic MuLV with the biologic features of the Moloney isolate and also MuLV of the polytropic or MCF class. Newborn mice developed lymphoma following inoculation with the MuLV mixture expressed by these cells. These findings should be considered in interpretation of increasingly widespread use of these cells for propagation of other viruses, studies of biological responses to virus infection and use in RNA interference and cell signalling studies

    Role of laeA in the regulation of alb1, gliP , Conidial Morphology and Virulence in Aspergillus fumigatus

    Get PDF
    The alb1 (pksP) gene has been reported as a virulence factor controlling the pigmentation and morphology of conidia in Aspergillus fumigatus. A recent report suggested that laeA regulates alb1 expression and conidial morphology but not pigmentation in the A. fumigatus strain AF293. laeA has also been reported to regulate the synthesis of secondary metabolites, such as gliotoxin. We compared the role of laeA in the regulation of conidial morphology and the expression of alb1 and gliP in strains B-5233 and AF293, which differ in colony morphology and nutritional requirements. Deletion of laeA did not affect conidial morphology or pigmentation in these strains, suggesting that laeA is not involved in alb1 regulation during conidial morphogenesis. Deletion of laeA, however, caused down-regulation of alb1 during mycelial growth in a liquid medium. Transcription of gliP, involved in the synthesis of gliotoxin, was drastically reduced in B-5233laeAΔ, and the gliotoxin level found in the culture filtrates was 20% of wild-type concentrations. While up-regulation of gliP in AF293 was comparable to that in B-5233, the relative mRNA level in AF293laeAΔ was about fourfold lower than that in B-5233laeAΔ. Strain B-5233lae4Δ caused slower onset of fatal infection in mice relative to that with B-5233. Histopathology of sections from lungs of infected mice corroborated the survival data. Culture filtrates from B-5233laeAΔ caused reduced death in thymoma cells and were less inhibitory to a respiratory burst of neutrophils than culture filtrates from B-5233. Our results suggest that while laeA is not involved in the regulation of alb1 function in conidial morphology, it regulates the synthesis of gliotoxin and the virulence of A. fumigatus

    Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency

    Get PDF
    Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman–Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression or by pancreatic enzyme supplementation demonstrates that these phenotypes are secondary to malnutrition in pq/pq mice

    Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza.

    No full text
    AbstractIn response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection

    Mitochondrial dysfunction in mut methylmalonic acidemia

    No full text
    Methylmalonic acidemia is an autosomal recessive inborn error of metabolism caused by defective activity of methylmalonyl-CoA mutase (MUT) that exhibits multiorgan system pathology. To examine whether mitochondrial dysfunction is a feature of this organic acidemia, a background-modified Mut-knockout mouse model was constructed and used to examine mitochondrial ultrastructure and respiratory chain function in the tissues that manifest pathology in humans. In parallel, the liver from a patient with mut methylmalonic acidemia was studied in a similar fashion. Megamitochondria formed early in life in the hepatocytes of the Mut−/− animals and progressively enlarged. Liver extracts prepared from the mutants at multiple time points displayed respiratory chain dysfunction, with diminished cytochrome c oxidase activity and reduced intracellular glutathione compared to control littermates. Over time, the exocrine pancreas and proximal tubules of the kidney also exhibited megamitochondria, and older mutant mice eventually developed tubulointerstitial renal disease. The patient liver displayed similar morphological and enzymatic findings as observed in the murine tissues. These murine and human studies establish that megamitochondria formation with respiratory chain dysfunction occur in a tissue-specific fashion in methylmalonic acidemia and suggest treatment approaches based on improving mitochondrial function and ameliorating the effects of oxidative stress.—Chandler, R. J., Zerfas, P. M., Shanske, S., Sloan, J., Hoffmann, V., DiMauro, S., Venditti, C. P. Mitochondrial dysfunction in mut methylmalonic acidemia

    Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy

    Get PDF
    Abstract. To improve solution robustness, we introduce the concept of super solutions to constraint programming. An (a, b)-super solution is one in which if a variables lose their values, the solution can be repaired by assigning these variables with a new values and at most b other variables. Super solutions are a generalization of supermodels in propositional satisfiability. We focus in this paper on (1,0)-super solutions, where if one variable loses its value, we can find another solution by re-assigning this variable with a new value. To find super solutions, we explore methods based both on reformulation and on search. Our reformulation methods transform the constraint satisfaction problem so that the only solutions are super solutions. Our search methods are based on a notion of super consistency. Experiments show that super MAC, a novel search-based method shows considerable promise. When super solutions do not exist, we show how to find the most robust solution. Finally, we extend our approach from robust solutions of constraint satisfaction problems to constraint optimization problems.
    corecore