168 research outputs found

    Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to current chemotherapeutic agents is a major cause of therapy failure in ovarian cancer patients, but the exact mechanisms leading to the development of drug resistance remain unclear.</p> <p>Methods</p> <p>To better understand mechanisms of drug resistance, and possibly identify novel targets for therapy, we generated a series of drug resistant ovarian cancer cell lines through repeated exposure to three chemotherapeutic drugs (cisplatin, doxorubicin, or paclitaxel), and identified changes in gene expression patterns using Illumina whole-genome expression microarrays. Validation of selected genes was performed by RT-PCR and immunoblotting. Pathway enrichment analysis using the KEGG, GO, and Reactome databases was performed to identify pathways that may be important in each drug resistance phenotype.</p> <p>Results</p> <p>A total of 845 genes (p < 0.01) were found altered in at least one drug resistance phenotype when compared to the parental, drug sensitive cell line. Focusing on each resistance phenotype individually, we identified 460, 366, and 337 genes significantly altered in cells resistant to cisplatin, doxorubicin, and paclitaxel, respectively. Of the 845 genes found altered, only 62 genes were simultaneously altered in all three resistance phenotypes. Using pathway analysis, we found many pathways enriched for each resistance phenotype, but some dominant pathways emerged. The dominant pathways included signaling from the cell surface and cell movement for cisplatin resistance, proteasome regulation and steroid biosynthesis for doxorubicin resistance, and control of translation and oxidative stress for paclitaxel resistance.</p> <p>Conclusions</p> <p>Ovarian cancer cells develop drug resistance through different pathways depending on the drug used in the generation of chemoresistance. A better understanding of these mechanisms may lead to the development of novel strategies to circumvent the problem of drug resistance.</p

    Precise Localization of the Soft Gamma Repeater SGR 1627-41 and the Anomalous X-ray Pulsar AXP 1E1841-045 with Chandra

    Full text link
    We present precise localizations of AXP 1E1841-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known AXP and SGR counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs to have detectable counterparts with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new IR observations during the July 2003 burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.Comment: 29 pages, 4 figures, accepted for publication in Ap

    Semaphorin 3A Contributes to Distal Pulmonary Epithelial Cell Differentiation and Lung Morphogenesis

    Get PDF
    altered distal lung structure.) littermate controls. mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death.These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury

    MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer

    Get PDF
    MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes.Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels. Interestingly, there was little overlap between the predicted and the experimental targets or pathways, or between experimental targets/pathways obtained using different cell lines, highlighting the complexity of miRNA target selection.Our results identify several differentially expressed miRNAs in ovarian cancer and identify potential target transcripts that may be regulated by these miRNAs. These miRNAs and their targets may have important roles in the initiation and development of ovarian cancer

    Epithelial-Associated Inflammatory Pathways Underlie Residual Asthma Exacerbations in Urban Children Treated with Mepolizumab Therapy

    Get PDF
    Rationale: Identification of airway inflammatory pathways in asthma has proven essential to understanding mechanisms of disease and has led to effective personalized treatment with biologic therapies. However, relatively little is known about patterns of airway inflammation at the time of respiratory illnesses and how such patterns relate to responsiveness to biologic therapies. Methods: The MUPPITS-1 (n=106) and MUPPITS-2 (n=290) studies investigated asthma exacerbations in urban children with exacerbation-prone asthma and ≥150/microliter blood eosinophils. Children in both studies received guidelines-based asthma care; in MUPPITS-2, participants were additionally randomized (1:1) to placebo or mepolizumab. Nasal lavage samples were collected during respiratory illnesses for RNA-sequencing and analyzed by modular analysis to assess genome-wide expression patterns associated with exacerbation illnesses. Results: Among 284 illnesses, exacerbations that occurred in the absence of mepolizumab therapy showed significantly higher upregulation of eosinophil associated inflammatory pathways (fold change values [FC]=1.27-1.43, p-values\u3c0.05), including a Type-2 inflammation module composed of eosinophil, mast cell, and IL-13 response genes. In contrast, exacerbations that occurred while on mepolizumab therapy showed significantly higher upregulation of several epithelial inflammatory pathways (FC=1.36-1.64, p-values\u3c0.05) including TGF-β/Smad3 signaling, extracellular matrix production, and epidermal growth factor receptor signaling. Conclusions: These results indicate that novel inflammatory pathways, likely originating from the airway epithelium and distinct from Type-2 or eosinophilic inflammation, drive residual exacerbations that occur in children treated with mepolizumab therapy added to guideline-based care. These findings identify likely mechanisms of persistent disease expression in these children despite significant depletion of eosinophils and can identify novel treatment targets for future studies

    Mepolizumab Alters Regulation of Airway Type-2 Inflammation in Urban Children with Asthma by Disrupting Eosinophil Gene Expression but Enhancing Mast Cell and Epithelial Pathways

    Get PDF
    Rationale: Mepolizumab (anti-IL5) reduces asthma exacerbations in urban children. We previously utilized nasal transcriptomics to identify inflammatory pathways (gene co-expression modules) associated with exacerbations despite this therapy. To understand mepolizumab’s precise impact on these pathways, we assess gene co-expression and loss of correlation, “decoherence,” using differential co-expression network analyses. Methods: 290 urban children (6-17 years) with exacerbation-prone asthma and blood eosinophils ≥150/microliter were randomized (1:1) to q4 week placebo or mepolizumab injections added to guideline-based care for 52 weeks. Nasal lavage samples were collected before and during treatment for RNA-sequencing. Differential co-expression of gene networks was evaluated to assess interactions and regulatory aspects of type-2 and eosinophilic airway inflammation. Results: Mepolizumab, but not placebo, significantly reduced the overall expression of an established type-2 inflammation gene co-expression module (fold change=0.77, p=0.002) enriched for eosinophil, mast cell, and epithelial IL-13 response genes (242 genes). Mepolizumab uncoupled co-expression of genes in this pathway. During mepolizumab, but not placebo treatment, there was significant loss of correlation among eosinophil-specific genes including RNASE2 (EDN), RNASE3 (ECP), CLC, SIGLEC8, and IL5RA contrasting a reciprocal increase in correlation among mast cell-specific genes (TPSAB1, CPA3, FCER1A), T2 cytokines (IL4, IL5, and IL13), and POSTN. Conclusions: These results suggest mepolizumab disrupts the regulatory interactions of gene co-expression among airway eosinophils, mast cells and epithelium by interrupting transcription regulation in eosinophils with enhancement in mast cell and epithelial inflammation. This paradoxical effect may contribute to an incomplete reduction of asthma exacerbations and demonstrates how differential co-expression network analyses can identify targets for more precise therapies

    Distinct Airway Inflammatory Pathways Associated with Asthma Exacerbations are Modulated by Mepolizumab Therapy in Children

    Get PDF
    Rationale: Identification of specific airway inflammatory pathways can lead to effective personalized treatment with biologics in asthma and insights to mechanisms of action. Methods: 290 urban children with exacerbation-prone asthma and ≥150/mm3 blood eosinophils were randomized (1:1) to placebo or mepolizumab added to guideline-based care. Nasal lavage samples were collected at randomization and during treatment for RNA-sequencing, and analyzed by cell-deconvolution modular analysis to assess genome-wide expression patterns associated with exacerbation number and effect of treatment. Results: Mepolizumab significantly reduced the frequency of exacerbations compared to placebo. At randomization, there were no differences in expression between treatment groups; multiple modules were subsequently differentially expressed during mepolizumab but not placebo treatment. Furthermore, expression levels of multiple modules were associated with the exacerbation number during the study, with distinct relationships observed in the placebo and/or mepolizumab groups. Notably, higher expression at randomization of an eosinophil-associated module enriched for Type-2 genes including IL4, IL5, and IL13, was associated with increased exacerbations in placebo (β=0.19, p\u3c0.001), but not mepolizumab-treated children (interaction p\u3c0.01). Furthermore, mepolizumab treatment reduced expression of this module (Fold-change=0.62, p\u3c0.001). In contrast, higher expression at randomization of an eosinophil-associated module enriched for eosinophil activation (e.g. CD9) and mucus hypersecretion (e.g. MUC5AC) genes was associated with exacerbation number in both groups throughout the study (β=0.18, p\u3c0.01) and was unaltered by mepolizumab therapy. Conclusions: Multiple distinct airway inflammation patterns were identified associated with exacerbation frequency. These findings identify inflammatory endotypes and indicate likelihood and potential mechanisms of a beneficial clinical response to mepolizumab therapy to prevent exacerbations

    Effect of praziquantel treatment of Schistosoma mansoni during pregnancy on intensity of infection and antibody responses to schistosome antigens: results of a randomised, placebo-controlled trial

    Get PDF
    BACKGROUND: Praziquantel treatment of schistosomiasis during pregnancy was only recommended in 2002; hence the effects of treatment during pregnancy are not fully known. We have therefore evaluated the effects on infection intensity and the immunological effects of praziquantel treatment against Schistosoma mansoni during pregnancy, compared with treatment after delivery. METHODS: A nested cohort of 387 Schistosoma mansoni infected women was recruited within a larger trial of de-worming during pregnancy. Women were randomised to receive praziquantel or placebo during pregnancy. All women were treated after delivery. Infection intensity after treatment was assessed by a single Kato-Katz examination of stool samples with duplicate slides and categorised as undetected, light (1-99 eggs per gram (epg)), moderate (100-399 epg) or heavy (>or=400 epg). Antibodies against S. mansoni worm and egg antigens were measured by ELISA. Results were compared between women first treated during pregnancy and women first treated after delivery. RESULTS: At enrollment, 252 (65.1%) of the women had light infection (median (IQR) epg: 35 (11, 59)), 75 (19.3%) moderate (median (IQR) epg: 179(131, 227)) and 60 (15.5%) had heavy infection (median (IQR) epg: 749 (521, 1169)) with S. mansoni. At six weeks after praziquantel treatment during pregnancy S. mansoni infection was not detectable in 81.9% of the women and prevalence and intensity had decreased to 11.8% light, 4.7% moderate and 1.6% heavy a similar reduction when compared with those first treated after delivery (undetected (88.5%), light (10.6%), moderate (0.9%) and heavy (0%), p = 0.16). Parasite specific antibody levels were lower during pregnancy than after delivery. Praziquantel treatment during pregnancy boosted anti-worm IgG isotypes and to a lesser extent IgE, but these boosts were less pronounced than in women whose treatment was delayed until after delivery. Praziquantel had limited effects on antibodies against egg antigens. CONCLUSION: S mansoni antigen-specific antibody levels and praziquantel-induced boosts in antibody levels were broadly suppressed during pregnancy, but this was not associated with major reduction in the efficacy of praziquantel. Long-term implications of these findings in relation to resistance to re-infection remain to be explored

    Claudin-7 Is Frequently Overexpressed in Ovarian Cancer and Promotes Invasion

    Get PDF
    Background: Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC. Methodology/Principal Findings: A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration
    corecore