9,032 research outputs found

    Exchange bias effect and intragranular magnetoresistance in Nd$_{0.84}Sr_{0.16}CoO_3

    Full text link
    Electrical transport properties as a function of magnetic field and time have been investigated in polycrystalline, Nd_{0.84}Sr_{0.16}CoO_3. A strong exchange bias (EB) effect is observed associated with the fairly large intragranular magnetoresistance (MR). The EB effect observed in the MR curve is compared with the EB effect manifested in magnetic hysteresis loop. Training effect, described as the decrease of EB effect when the sample is successively field-cycled at a particular temperature, has been observed in the shift of the MR curve. Training effect could be analysed by the successful models. The EB effect, MR and a considerable time dependence in MR are attributed to the intrinsic nanostructure giving rise to the varieties of magnetic interfaces in the grain interior

    Shortcuts to Thermodynamic Computing: The Cost of Fast and Faithful Erasure

    Get PDF
    Landauer's Principle states that the energy cost of information processing must exceed the product of the temperature and the change in Shannon entropy of the information-bearing degrees of freedom. However, this lower bound is achievable only for quasistatic, near-equilibrium computations -- that is, only over infinite time. In practice, information processing takes place in finite time, resulting in dissipation and potentially unreliable logical outcomes. For overdamped Langevin dynamics, we show that counterdiabatic potentials can be crafted to guide systems rapidly and accurately along desired computational paths, providing shortcuts that allows for the precise design of finite-time computations. Such shortcuts require additional work, beyond Landauer's bound, that is irretrievably dissipated into the environment. We show that this dissipated work is proportional to the computation rate as well as the square of the information-storing system's length scale. As a paradigmatic example, we design shortcuts to erase a bit of information metastably stored in a double-well potential. Though dissipated work generally increases with erasure fidelity, we show that it is possible perform perfect erasure in finite time with finite work. We also show that the robustness of information storage affects the energetic cost of erasure---specifically, the dissipated work scales as the information lifetime of the bistable system. Our analysis exposes a rich and nuanced relationship between work, speed, size of the information-bearing degrees of freedom, storage robustness, and the difference between initial and final informational statistics.Comment: 19 pages, 7 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/scte.ht

    Structural and decay properties of Z=132,138Z=132,138 superheavy nuclei

    Full text link
    In this paper, we analyze the structural properties of Z=132Z=132 and Z=138Z=138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL33^{*} parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α\alpha-decay, β\beta-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z=132Z=132 within the range 312 \le A \le 392 and 318 \le A \le 398 for Z=138Z=138 is systematically analyzed within self-consistent relativistic mean field model. From our analysis, we inferred that the α\alpha-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β\beta decay as dominant mode of decay in 318322138^{318-322}138 isotopes.Comment: 16 pages, 10 figures , 8 table

    Theoretical studies on structural and decay properties of Z=119Z=119 superheavy nuclei

    Full text link
    In this manuscript, we analyze the structural properties of Z=119Z=119 superheavy nuclei in the mass range of 284 \le A \le 375 within the framework of deformed relativistic mean field theory (RMF) and calculate the binding energy, radii, quadrupole deformation parameter, separation energies and density profile. Further, a competition between possible decay modes such as α\alpha-decay, β\beta-decay and spontaneous fission (SF) of the isotopic chain of Z=119Z=119 superheavy nuclei under study is systematically analyzed within self-consistent relativistic mean field model. Moreover, our analysis confirmed that α\alpha-decay is restricted within the mass range 284 \leq A \leq 296 and thus being the dominant decay channel in this mass range. However, for the mass range 297 \leq A \leq 375 the nuclei are unable to survive fission and hence SF is the principal mode of decay for these isotopes. There is no possibility of β\beta-decay for the considered isotopic chain. In addition, we forecasted the mode of decay 284296^{284-296}119 as one α\alpha chain from 284^{284}119 and 296^{296}119, two consistent α\alpha chains from 285^{285}119 and 295^{295}119, three consistent α\alpha chains from 286^{286}119 and 294^{294}119, four consistent alpha chains from 287^{287}119, six consistent alpha chains from 288293^{288-293}119. Also from our analysis we inferred that for the isotopes 264266,269^{264-266,269}Bh both α\alpha decay and SF are equally competent and can decay via either of these two modes. Thus, such studies can be of great significance to the experimentalists in very near future for synthesizing Z=119Z=119 superheavy nuclei.Comment: 14 pages, 6 figures. arXiv admin note: text overlap with arXiv:1611.00232, arXiv:1704.0315
    corecore