41 research outputs found

    S100A8 & S100A9: alarmin mediated inflammation in tendinopathy

    Get PDF
    Alarmins S100A8 and S100A9 are endogenous molecules released in response to environmental triggers and cellular damage. They are constitutively expressed in immune cells such as monocytes and neutrophils and their expression is upregulated under inflammatory conditions. The molecular mechanisms that regulate inflammatory pathways in tendinopathy are largely unknown therefore identifying early immune effectors is essential to understanding the pathology. Based on our previous investigations highlighting tendinopathy as an alarmin mediated pathology we sought evidence of S100A8 & A9 expression in a human model of tendinopathy and thereafter, to explore mechanisms whereby S100 proteins may regulate release of inflammatory mediators and matrix synthesis in human tenocytes. Immunohistochemistry and quantitative RT-PCR showed S100A8 & A9 expression was significantly upregulated in tendinopathic tissue compared with control. Furthermore, treating primary human tenocytes with exogenous S100A8 & A9 significantly increased protein release of IL-6, IL-8, CCL2, CCL20 and CXCL10; however, no alterations in genes associated with matrix remodelling were observed at a transcript level. We propose S100A8 & A9 participate in early pathology by modulating the stromal microenvironment and influencing the inflammatory profile observed in tendinopathy. S100A8 and S100A9 may participate in a positive feedback mechanism involving enhanced leukocyte recruitment and release of pro-inflammatory cytokines from tenocytes that perpetuates the inflammatory response within the tendon in the early stages of disease

    Hard X-Ray Scanning Microscopy

    No full text

    1D silicon refractive lenses for surface scattering with high energy X-rays

    No full text
    At the high energy X-ray beamline P07 at PETRA III, 1D focusing down to 4 micrometer vertical beam height while preserving a horizontal beam width of 0.5 mm was established by refractive lenses etched into a silicon wafer. A single wafer with 8 different lens structures can cover the full energy range between 50 and 120 keV. For surface diffraction on ultrathin filmsa factor of 4 in intensity can be achieved compared to the already established Al-compound refractive 2D-lenses
    corecore