331 research outputs found

    SYNTHESIS CHARACTERISATION AND BIOLOGICAL EVALUATION OF (3Z, 4Z)-3, 4-BIS (SUBSTITUTED PHENYL BENZYLIDINE)-1-(4-SUBTITUTED PHENYL) PYROLIDINE-2, 5-DIONE

    Get PDF
    Objective: The present study focuses on synthesis and characterization of new series of bis-chalcone derivatives from cyclic imides and evaluating its antimicrobial activity against a pathogenic microorganism.Methods: The substituted cyclic imides 4-methyl phenyl pyrrolidine 2,5 dione 1 and 4-methoxy phenyl pyrrolidine 2,5 dione 2 were synthesized from succinic acid and primary aromatic amines. These cyclic imides condensed with substituted benzaldehydes in the presence of acetic acid furnished bis-heterocyclic chalcones and characterized by FT-IR, 1H NMR and also microbial activity was determined using the disc diffusion method.Results: The antimicrobial activity of bis-heterocyclic chalcones was tested against selective pathogens and the zone of inhibition was observed in E. coli, C. albicans and A. niger at 100µg/ml concentration.Conclusion: The compound (3Z,4Z)-3,4-bis-(2-hydroxybenzylidine)-1-p-tolylpyrrolidine-2,5-dione (3b) with methyl and hydroxyl substituent on benzene ring exhibited good antibacterial activity against E. coli and potent antifungal activity against C. albicans and A. niger.Keywords: Succinic acid, Cyclic imides, Pyrrolidine-2,5-dione, Bis-chalcon

    Molecular mechanisms of autoimmunity triggered by microbial infection

    Get PDF
    Autoimmunity can be triggered by microbial infection. In this context, the discovery of Toll-like receptors (TLRs) provides new insights and research perspectives. TLRs induce innate and adaptive antimicrobial immune responses upon exposure to common pathogen-associated molecules, including lipopeptides, lipopolysaccharides, and nucleic acids. They also have the potential, however, to trigger autoimmune disease, as has been revealed by an increasing number of experimental reports. This review summarizes important facts about TLR biology, available data on their role in autoimmunity, and potential consequences for the management of patients with autoimmune disease

    Comparison of 16S rRNA gene sequences of genus Methanobrevibacter

    Get PDF
    BACKGROUND: The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter. RESULTS: The phylogenetic analysis of the genus based on 786 bp aligned region from fifty-four representative sequences of the 120 available sequences for the genus revealed seven multi-member groups namely, Ruminantium, Smithii, Woesei, Curvatus, Arboriphilicus, Filiformis, and the Termite gut symbionts along with three separate lineages represented by Mbr. wolinii, Mbr. acididurans, and termite gut flagellate symbiont LHD12. The cophenetic correlation coefficient, a test for the ultrametric properties of the 16S rRNA gene sequences used for the tree was found to be 0.913 indicating the high degree of goodness of fit of the tree topology. A significant relationship was found between the 16S rRNA sequence similarity (S) and the extent of DNA hybridization (D) for the genus with the correlation coefficient (r) for logD and logS, and for [ln(-lnD) and ln(-lnS)] being 0.73 and 0.796 respectively. Our analysis revealed that for this genus, when S = 0.984, D would be <70% at least 99% of the times, and with 70% D as the species "cutoff", any 16S rRNA gene sequence showing <98% sequence similarity can be considered as a separate species. In addition, we deduced group specific signature positions that have remained conserved in evolution of the genus. CONCLUSIONS: A very significant relationship between D and S was found to exist for the genus Methanobrevibacter, implying that it is possible to predict D from S with a known precision for the genus. We propose to include the termite gut flagellate symbiont LHD12, the methanogenic endosymbionts of the ciliate Nyctotherus ovalis, and rat feces isolate RT reported earlier, as separate species of the genus Methanobrevibacter

    Water users' association in Hadshi Minor Irrigation Project: Farmers' experience

    Get PDF
    Water users' associationsIrrigation canalsMaintenance

    Water users' association in Parunde Minor Irrigation Project: Farmers' experience

    Get PDF
    Water users' associationsIrrigation programsWater distributionFarmer participationIncome

    Short Communication Residence time distribution in the extra capillary space of hollow fiber bioreactors

    Get PDF
    The residence time distribution (RTD) in the extracapillary space (ECS) of hollow fiber bioreactors (HFBRs) has been studied using a high molecular weight protein, bovine serum albumin, as a tracer. The RTD measurements have been carried out at different conditions of flow in the ECS and the intracapillary space (ICS). The RTD results obtained give an indication of the flow patterns existing in the ECS. The implications of these studies on cell cultivation as well as product recovery from HFBRs have been discussed

    Performance Evaluation of Vanilla, Residual, and Dense 2D U-Net Architectures for Skull Stripping of Augmented 3D T1-weighted MRI Head Scans

    Full text link
    Skull Stripping is a requisite preliminary step in most diagnostic neuroimaging applications. Manual Skull Stripping methods define the gold standard for the domain but are time-consuming and challenging to integrate into processing pipelines with a high number of data samples. Automated methods are an active area of research for head MRI segmentation, especially deep learning methods such as U-Net architecture implementations. This study compares Vanilla, Residual, and Dense 2D U-Net architectures for Skull Stripping. The Dense 2D U-Net architecture outperforms the Vanilla and Residual counterparts by achieving an accuracy of 99.75% on a test dataset. It is observed that dense interconnections in a U-Net encourage feature reuse across layers of the architecture and allow for shallower models with the strengths of a deeper network.Comment: Research Article submitted to the 2nd International Conference on Biomedical Engineering Science and Technology: Roadway from Laboratory to Market, at the National Institute of Technology Raipur, Chhattisgarh, Indi

    Lactobacillus plantarum (VR1) isolated from an Ayurvedic medicine (Kutajarista) ameliorates in vitro cellular damage caused by Aeromonas veronii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Lactobacillus plantarum </it>is considered as a safe and effective probiotic microorganism. Among various sources of isolation, traditionally fermented foods are considered to be rich in <it>Lactobacillus </it>spp., which can be exploited for their probiotic attribute. Antibacterial property of <it>L. plantarum </it>has been demonstrated against various enteric pathogens in both <it>in vitro </it>and <it>in vivo </it>systems. This study was aimed at characterizing <it>L. plantarum </it>isolated from Kutajarista, an ayurvedic fermented biomedicine, and assessing its antagonistic property against a common enteropathogen <it>Aeromonas veronii</it>.</p> <p>Results</p> <p>We report the isolation of <it>L. plantarum </it>(VR1) from Kutajarista, and efficacy of its cell free supernatant (CFS) in amelioration of cytotoxicity caused by <it>Aeromonas veronii</it>. On the part of probiotic attributes, VR1 was tolerant to pH 2, 0.3% bile salts and simulated gastric juice. Additionally, VR1 also exhibited adhesive property to human intestinal HT-29 cell line. Furthermore, CFS of VR1 was antibacterial to enteric pathogens like <it>Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli</it>, <it>Aeromonas veronii </it>and clinical isolates of <it>P. aeruginosa </it>and <it>E. coli</it>. Detailed study regarding the effect of VR1 CFS on <it>A. veronii </it>cytotoxicity showed a significant decrease in vacuole formation and detrimental cellular changes in Vero cells. On the other hand, <it>A. veronii </it>CFS caused disruption of tight junction proteins ZO-1 and actin in MDCK cell line, which was prevented by pre-incubation with CFS of VR1.</p> <p>Conclusions</p> <p>This is the first study to report isolation of <it>L. plantarum </it>(VR1) from Kutajarista and characterisation for its probiotic attributes. Our study demonstrates the antagonistic property of VR1 to <it>A. veronii </it>and effect of VR1 CFS in reduction of cellular damage caused by <it>A. veronii </it>in both Vero and MDCK cell lines.</p

    Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates

    Get PDF
    We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll–protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll–protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality
    • …
    corecore