29 research outputs found

    Structural heterogeneities in starch hydrogels

    Get PDF
    Hydrogels have a complex, heterogeneous structure and organisation, making them promising candidates for advanced structural and cosmetics applications. Starch is an attractive material for producing hydrogels due to its low cost and biocompatibility, but the structural dynamics of polymer chains within starch hydrogels are not well understood, limiting their development and utilisation. We employed a range of NMR methodologies (CPSP/MAS, HR-MAS, HPDEC and WPT-CP) to probe the molecular mobility and water dynamics within starch hydrogels featuring a wide range of physical properties. The insights from these methods were related to bulk rheological, thermal (DSC) and crystalline (PXRD) properties. We have reported for the first time the presence of highly dynamic starch chains, behaving as solvated moieties existing in the liquid component of hydrogel systems. We have correlated the chains’ degree of structural mobility with macroscopic properties of the bulk systems, providing new insights into the structure-function relationships governing hydrogel assemblies

    The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy

    No full text
    While cultivated rice, Oryza sativa, is arguably the world’s most important cereal crop, there is little comparative morphological information available for the grain of rice wild relatives. In this study, the endosperm of 16 rice wild relatives were compared to O. sativa subspecies indica and O. sativa subspeciesjaponica using scanning electron microscopy. Although the aleurone, starch granules, protein bodies and endosperm cell shapes of the cultivated and non-cultivated species were similar, several differences were observed. The starch granules of some wild species had internal channels that have not been reported in cultivated rice. Oryza longiglumis, Microlaena stipoides and Potamophila parviflora, had an aleurone that was only one-cell thick in contrast to the multiple cell layers observed in the aleurone of the remainingOryza species. The similarity of the endosperm morphology of undomesticated species with cultivated rice suggests that some wild species may have similar functional properties. Obtaining a better understanding of the wild rice species grain ultrastructure will assist in identifying potential opportunities for development of these wild species as new cultivated crops or for their inclusion in plant improvement programmes
    corecore