64 research outputs found

    Biodiversity of Cyanophyceae from Amaravati Dam of Dhule district (Maharashtra)

    Get PDF
    In aquatic ecosystems the flora and fauna interact with the biotic and abiotic factors in their habitat. Therefore flora and fauna are called biological indicators. Man made reservoirs like Dam reflect both terrestrial and aquatic environment as their construction involves superimposition of lentic water body on flowing water mass on the terrain. Algae constitute the main autotrophic component of the aquatic ecosystems. Change in algal community severely affect the species diversity. Biodiversity is greater in fresh water than in the most affected terrestrial ecosystem. So the present study shows biodiversity of Cyanophyceae from Amaravati Dam. Total 35 taxa belonging to 15 genera are discussed in present paper. The genera viz. Microcystis, Chroococcus, Gloeocapsa, Aphanocapsa, Synechococcus, Merismopedia, spirulina, Oscillatoria, Phormidium, Lyngbya, Nostoc, Anabaena, Plectonema, Homoethrix and calothrix.ÂÂ

    Worm blobs as entangled living polymers:From topological active matter to flexible soft robot collectives

    Get PDF
    Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the “blob”, which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives.</p

    Complexity and neutron stars structure

    Full text link
    We apply the statistical measure of complexity introduced by Lopez-Ruiz, Mancini and Calbet to neutron stars structure. Neutron stars is a classical example where the gravitational field and quantum behavior are combined and produce a macroscopic dense object. Actually, we continue the recent application of Sanudo and Pacheco to white dwarfs structure. We concentrate our study on the connection between complexity and neutron star properties, like maximum mass and the corresponding radius, applying a specific set of realistic equation of states. Moreover, the effect of the strength of the gravitational field on the neutron star structure and consequently on the complexity measure is also investigated. It is seen that neutron stars, consistent with astronomical observations so far, are ordered systems (low complexity), which cannot grow in complexity as their mass increases. This is a result of the interplay of gravity, the short-range nuclear force and the very short-range weak interaction.Comment: Preprint, 23 pages, 28 figure

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore