1,555 research outputs found

    Exploring the possibility of enhancing the figure-of-merit ( >> 2) of Na0.74_{0.74}CoO2_{2}: A combined experimental and theoretical study

    Full text link
    Search of new thermoelectric (TE) materials with high \textit{figure-of-merit} (ZT) is always inspired the researcher in TE field. Here, we present a combined experimental and theoretical study of TE properties of Na0.74_{0.74}CoO2_{2} compound in high-temperature region. The experimental Seebeck coefficient (S) is found to vary from 64 to 118 μ\muV/K in the temperature range 300−620300-620 K. The positive values of S are indicating the dominating p-type behaviour of the compound. The observed value of thermal conductivity (κ\kappa) is ∼\sim 2.2 W/m-K at 300 K. In the temperature region 300−430300-430 K, the value of κ\kappa increases up to ∼\sim 2.6 W/m-K and then decreases slowly till 620 K with the corresponding value of ∼\sim 2.4 W/m-K. We have also carried out the theoretical calculations and the best matching between experimental and calculated values of transport properties are observed in spin-polarized calculation within DFT+\textit{U} by chosen \textit{U} = 4 eV. The maximum calculated value of ZT is found to be ∼\sim 0.67 at 1200 K for p-type conduction. Our computational study suggests that the possibility of n-type behaviour of the compound which can lead to a large value of ZT at higher temperature region. Electron doping of ∼\sim 5.1×\times1020^{20} cm−3^{-3} is expected to give rise the high ZT value of ∼\sim 2.7 at 1200 K. Using these temperature-dependent ZT values, we have calculated the maximum possible values of efficiency (η\eta) of thermoelectric generator (TEG) made by p and n-type Na0.74_{0.74}CoO2_{2}. The present study suggests that one can get the efficiency of a TE cell as high as ∼\sim 11%\% when the cold and hot end temperature are fixed at 300 K and 1200 K, respectively. Such high values of ZT and efficiency suggest that Na0.74_{0.74}CoO2_{2} can be used as a potential candidate for high-temperature TE applications

    Minimum cbits for remote preperation and measurement of a qubit

    Full text link
    We show that a qubit chosen from equatorial or polar great circles on a Bloch spehere can be remotely prepared with one cbit from Alice to Bob if they share one ebit of entanglement. Also we show that any single particle measurement on an arbitrary qubit can be remotely simulated with one ebit of shared entanglement and communication of one cbit.Comment: Latex, 7 pages, minor changes, references adde

    Mediation of Long Range Charge Transfer by Kondo Bound States

    Get PDF
    We present a theory of non-equilibrium long range charge transfer between donor and acceptor centers in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces electron tunneling lengths easily exceeding 10AËš\AA, as observed recently in DNA and organic charge transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction (through the orthogonality catastrophe) and by coupling to local vibrational modes.Comment: Revised content (broadened scope, vibrations added), submitted to Phys Rev Lett, added autho

    General impossible operations in quantum information

    Full text link
    We prove a general limitation in quantum information that unifies the impossibility principles such as no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal Hadamard gate for creating equal superposition of the original and its complement state. Surprisingly, we find that Hadamard transformations exist for an unknown qubit chosen either from the polar or equatorial great circles. Also, we show that for an unknown qubit one cannot design a universal unitary gate for creating unequal superpositions of the original and its complement state. We discuss why it is impossible to design a controlled-NOT gate for two unknown qubits and discuss the implications of these limitations.Comment: 15 pages, no figures, Discussion about personal quantum computer remove

    Low-Lying Electronic Excitations and Nonlinear Optic Properties of Polymers via Symmetrized Density Matrix Renormalization Group Method

    Get PDF
    A symmetrized Density Matrix Renormalization Group procedure together with the correction vector approach is shown to be highly accurate for obtaining dynamic linear and third order polarizabilities of one-dimensional Hubbard and U−VU-V models. The U−VU-V model is seen to show characteristically different third harmonic generation response in the CDW and SDW phases. This can be rationalized from the excitation spectrum of the systems.Comment: 4 pages Latex; 3 eps figures available upon request; Proceedings of ICSM '96, to appear in Synth. Metals, 199

    Speaker Recognition using Supra-segmental Level Excitation Information

    Get PDF
    Speaker specific information present in the excitation signal is mostly viewed from sub-segmental, segmental and supra-segmental levels. In this work, the supra-segmental level information is explored for recognizing speakers. Earlier study has shown that, combined use of pitch and epoch strength vectors provides useful supra-segmental information. However, the speaker recognition accuracy achieved by supra-segmental level feature is relatively poor than other levels source information. May be the modulation information present at the supra-segmental level of the excitation signal is not manifested properly in pith and epoch strength vectors. We propose a method to model the supra-segmental level modulation information from residual mel frequency cepstral coefficient (R-MFCC) trajectories. The evidences from R-MFCC trajectories combined with pitch and epoch strength vectors are proposed to represent supra-segmental information. Experimental results show that compared to pitch and epoch strength vectors, the proposed approach provides relatively improved performance. Further, the proposed supra-segmental level information is relatively more complimentary to other levels information

    Origin of negative differential resistance in a strongly coupled single molecule-metal junction device

    Get PDF
    A new mechanism is proposed to explain the origin of negative differential resistance (NDR) in a strongly coupled single molecule-metal junction. A first-principles quantum transport calculation in a Fe-terpyridine linker molecule sandwiched between a pair of gold electrodes is presented. Upon increasing applied bias, it is found that a new phase in the broken symmetry wavefunction of the molecule emerges from the mixing of occupied and unoccupied molecular orbital. As a consequence, a non-linear change in the coupling between molecule and lead is evolved resulting to NDR. This model can be used to explain NDR in other class of metal-molecule junction device.Comment: Submitted for review on Feb 4, 200
    • …
    corecore