25 research outputs found

    Thoughts on Quorum Sensing and Fungal Dimorphism

    Get PDF
    Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications that the use of farnesol as both a signaling molecule and to antagonize competing microbials species has for the regulation of HMG-CoA reductase, the enzyme that is the usual rate limiting step in sterol/lipid synthesis

    \u3ci\u3eCandida albicans ISW2 Regulates\u3c/i\u3e Chlamydospore Suspensor Cell Formation and Virulence \u3ci\u3eIn Vivo\u3c/i\u3e in a Mouse Model of Disseminated Candidiasis

    Get PDF
    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/ Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment

    \u3ci\u3eCandida albicans ISW2 Regulates\u3c/i\u3e Chlamydospore Suspensor Cell Formation and Virulence \u3ci\u3eIn Vivo\u3c/i\u3e in a Mouse Model of Disseminated Candidiasis

    Get PDF
    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/ Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment

    Thoughts on Quorum Sensing and Fungal Dimorphism

    Get PDF
    Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications that the use of farnesol as both a signaling molecule and to antagonize competing microbials species has for the regulation of HMG-CoA reductase, the enzyme that is the usual rate limiting step in sterol/lipid synthesis

    Physiological adaptations in Candida albicans

    No full text
    Candida albicans is the most important fungal pathogen of human, with a remarkable ability to withstand constantly changing microenvironment within the host through its morphological and metabolic plasticity. These fine-tuning mechanisms based on the ecological niche enhance its pathogenic potential and increase its fitness. Our understanding of what, when and how these mechanisms and factors contribute to commensal and pathogenic C. albicans is still insufficient for the development of efficient drugs against C. albicans infections. This dissertation addresses unique biological aspects evolved to increase the fitness attributes of C. albicans using both in vitro and in vivo studies. First, we investigate the in vitro and in vivo role of chlamydospores using a previously identified chlamydospore defective mutant Δisw2/Δisw2. We found that chlamydospores can be produced by C. albicans during mouse kidney colonization and ISW2 (orf19.7401) regulates suspensor cell formation rather than the spore itself. Screening for nutritional triggers for induction of chlamydospores suggests that these are formed as a response to nutritional stress rather than being a reproductive mode or resting stage. Secondly, we characterized FMS1 (orf19.4589) and CBP1 (orf19.7323), the two genes predicted to be rate limiting in pantothenic acid biosynthesis in yeasts. This is the first study to use gene deletion mutants to characterize their function and our findings indicate C. albicans has redundant roles for FMS1 compared to its ortholog in Sachcharomyces cerevisiae. Our findings fortuitously identified a ‘novel’ histidine biosynthesis regulatory pathway in Candida biology. This study illuminates novel metabolic switching circuitry through which C. albicans fulfil its essential primary metabolites. Thirdly, we investigated why C. albicans and C. dubliniensis evolved to use ubiquinone 9 (UQ9) rather than ubiquinone 7 (UQ7) as in other Candida species. We have shown that the presence of longer isoprenoid chains aids farnesol tolerance by comparing the farnesol sensitivity of S. cerevisiae (UQ6) with that of a strain modified to produce UQ9. Here we propose the presence of UQ9 is a physiological adaptation for stress tolerance in this pathogenic yeast

    Longer Ubiquinone Side Chains Contribute to Enhanced Farnesol Resistance in Yeasts

    Get PDF
    Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4–5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain

    Thoughts on Quorum Sensing and Fungal Dimorphism

    Get PDF
    Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications that the use of farnesol as both a signaling molecule and to antagonize competing microbials species has for the regulation of HMG-CoA reductase, the enzyme that is the usual rate limiting step in sterol/lipid synthesis

    Thoughts on Quorum Sensing and Fungal Dimorphism

    Get PDF
    Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications that the use of farnesol as both a signaling molecule and to antagonize competing microbials species has for the regulation of HMG-CoA reductase, the enzyme that is the usual rate limiting step in sterol/lipid synthesis

    Biotin Auxotrophy and Biotin Enhanced Germ Tube Formation in \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    Due to the increased number of immunocompromised patients, infections with the pathogen Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is one of the essential factors for virulence. In this study we noted that Lee’s medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth and 40-fold more biotin than is typically added to growth media. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 ˚C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee’s medium and a defined glucose-proline medium, and ca. 4-fold in 1% serum. Two biotin precursors, desthiobiotin and 7-keto-8-aminopelargonic acid (KAPA), also stimulated GTF. During these studies we also noted an inverse correlation between the number of times the inoculum had been washed and the concentration of serum needed to stimulate GTF. C. albicans cells that had been washed eight times achieved 80% GTF with only 0.1% sheep serum. The mechanism by which 1–4 µM biotin enhances GTF is still unknown except to note that equivalent levels of biotin are needed to create an internal supply of stored biotin and biotinylated histones. Biotin did not restore filamentation for any of the four known filamentation defective mutants tested. C. albicans is auxotrophic for biotin and this biotin auxotrophy was fulfilled by biotin, desthiobiotin, or KAPA. However, biotin auxotrophy is not temperature dependent or influenced by the presence of 5% CO2. Biotin starvation upregulated the biotin biosynthetic genes BIO2, BIO3, and BIO4 by 11-, 1500-, and 150-fold, respectively, and BIO2p is predicted to be mitochondrion-localized. Based on our findings, we suggest that biotin has two roles in the physiology of C. albicans, one as an enzymatic cofactor and another as a morphological regulator. Finally, we found no evidence supporting prior claims that C. albicans only forms hyphae at very low biotin (0.1 nM) growth conditions

    Biotin Auxotrophy and Biotin Enhanced Germ Tube Formation in Candida albicans

    No full text
    Due to the increased number of immunocompromised patients, infections with the pathogen Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is one of the essential factors for virulence. In this study we noted that Lee’s medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth and 40-fold more biotin than is typically added to growth media. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee’s medium and a defined glucose-proline medium, and ca. 4-fold in 1% serum. Two biotin precursors, desthiobiotin and 7-keto-8-aminopelargonic acid (KAPA), also stimulated GTF. During these studies we also noted an inverse correlation between the number of times the inoculum had been washed and the concentration of serum needed to stimulate GTF. C. albicans cells that had been washed eight times achieved 80% GTF with only 0.1% sheep serum. The mechanism by which 1–4 µM biotin enhances GTF is still unknown except to note that equivalent levels of biotin are needed to create an internal supply of stored biotin and biotinylated histones. Biotin did not restore filamentation for any of the four known filamentation defective mutants tested. C. albicans is auxotrophic for biotin and this biotin auxotrophy was fulfilled by biotin, desthiobiotin, or KAPA. However, biotin auxotrophy is not temperature dependent or influenced by the presence of 5% CO2. Biotin starvation upregulated the biotin biosynthetic genes BIO2, BIO3, and BIO4 by 11-, 1500-, and 150-fold, respectively, and BIO2p is predicted to be mitochondrion-localized. Based on our findings, we suggest that biotin has two roles in the physiology of C. albicans, one as an enzymatic cofactor and another as a morphological regulator. Finally, we found no evidence supporting prior claims that C. albicans only forms hyphae at very low biotin (0.1 nM) growth conditions
    corecore