11 research outputs found
Maximum Reward Formulation In Reinforcement Learning
Reinforcement learning (RL) algorithms typically deal with maximizing the
expected cumulative return (discounted or undiscounted, finite or infinite
horizon). However, several crucial applications in the real world, such as drug
discovery, do not fit within this framework because an RL agent only needs to
identify states (molecules) that achieve the highest reward within a trajectory
and does not need to optimize for the expected cumulative return. In this work,
we formulate an objective function to maximize the expected maximum reward
along a trajectory, derive a novel functional form of the Bellman equation,
introduce the corresponding Bellman operators, and provide a proof of
convergence. Using this formulation, we achieve state-of-the-art results on the
task of molecule generation that mimics a real-world drug discovery pipeline.Comment: 13 pages, 5 figure
BAND NN: A Deep Learning Framework For Energy Prediction and Geometry Optimization of Organic Small Molecules
Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies
Chemically Interpretable Graph Interaction Network for Prediction of Pharmacokinetic Properties of Drug-Like Molecules
Solubility of drug molecules is related to pharmacokinetic properties such as absorption and distribution, which affects the amount of drug that is available in the body for its action. Computational or experimental evaluation of solvation free energies of drug-like molecules/solute that quantify solubilities is an arduous task and hence development of reliable computationally tractable models is sought after in drug discovery tasks in pharmaceutical industry. Here, we report a novel method based on graph neural network to predict solvation free energies. Previous studies considered only the solute for solvation free energy prediction and ignored the nature of the solvent, limiting their practical applicability. The proposed model is an end-to-end framework comprising three phases namely, message passing, interaction and prediction phases. In the first phase, message passing neural network was used to compute inter-atomic interaction within both solute and solvent molecules represented as molecular graphs. In the interaction phase, features from the preceding step is used to calculate a solute-solvent interaction map, since the solvation free energy depends on how (un)favorable the solute and solvent molecules interact with each other. The calculated interaction map that captures the solute-solvent interactions along with the features from the message passing phase is used to predict the solvation free energies in the final phase. The model predicts solvation free energies involving a large number of solvents with high accuracy. We also show that the interaction map captures the electronic and steric factors that govern the solubility of drug-like molecules and hence is chemically interpretable
Spectra to Structure: Deep Reinforcement Learning for Molecular Inverse Problem
Spectroscopy is the study of how matter interacts with electromagnetic radiations of specific frequencies that has led to several monumental discoveries in science. The spectra of any particular molecule is highly information-rich, yet the inverse relation from the spectra to the molecular structure is still an unsolved problem. Nuclear Magnetic Resonance (NMR) spectroscopy is one such critical tool in the tool-set for scientists to characterise any chemical sample. In this work, a novel framework is proposed that attempts to solve this inverse problem by navigating the chemical space to find the correct structure that resulted in the target spectra. The proposed framework uses a combination of online Monte- Carlo-Tree-Search (MCTS) and a set of offline trained Graph Convolution Networks to build a molecule iteratively from scratch. Our method is able to predict the correct structure of the molecule ∼80% of the time in its top 3 guesses. We believe that the proposed framework is a significant step in solving the inverse design problem of NMR spectra to molecule
Chemically Interpretable Graph Interaction Network for Prediction of Pharmacokinetic Properties of Drug-like Molecules
Solubility of drug molecules is related to pharmacokinetic properties such as absorption and distribution, which affects the amount of drug that is available in the body for its action. Computational or experimental evaluation of solvation free energies of drug-like molecules/solute that quantify solubilities is an arduous task and hence development of reliable computationally tractable models is sought after in drug discovery tasks in pharmaceutical industry. Here, we report a novel method based on graph neural network to predict solvation free energies. Previous studies considered only the solute for solvation free energy prediction and ignored the nature of the solvent, limiting their practical applicability. The proposed model is an end-to-end framework comprising three phases namely, message passing, interaction and prediction phases. In the first phase, message passing neural network was used to compute inter-atomic interaction within both solute and solvent molecules represented as molecular graphs. In the interaction phase, features from the preceding step is used to calculate a solute-solvent interaction map, since the solvation free energy depends on how (un)favorable the solute and solvent molecules interact with each other. The calculated interaction map that captures the solute-solvent interactions along with the features from the message passing phase is used to predict the solvation free energies in the final phase. The model predicts solvation free energies involving a large number of solvents within the limits of chemical accuracy. We also show that the interaction map captures the electronic and steric factors that govern the solubility of drug-like molecules and hence is chemically interpretable.</div
Navigating Sheehan syndrome's silent onset: A case report
Sheehan syndrome is a relatively rare complication of postpartum bleeding that mostly results from anterior pituitary impairment caused by ischemic necrosis. This report highlights a unique case of a 58-year-old female suffering from Sheehan syndrome presenting with recurrent episodes of vomiting, abdominal pain, and drowsiness. Laboratory investigations confirmed hyponatremia, hypoglycemia, hypocortisolism, and secondary hypothyroidism. MRI scans revealed a partially empty sella. Prompt treatment with sodium supplementation, levothyroxine, and hydrocortisone led to significant improvement in the patient's condition. This case underscores the critical importance of early recognition and comprehensive diagnostic approaches to optimize management. It also highlights the need for increased medical awareness and tailored treatments to enhance outcomes and prevent complications in Sheehan syndrome
Deep Learning Enabled Inorganic Material Generator
Recent years have witnessed utilization of modern machine learning approaches for predicting properties of material using available datasets. However, to identify potential candidates for material discovery, one has to systematically scan through a large chemical space and subsequently calculate the properties of all such samples. On the other hand, generative methods are capable of efficiently sampling the chemical space and can generate molecules/materials with desired properties. In this study, we report a deep learning based inorganic material generator (DING) framework consisting of a generator module and a predictor module. The generator module is developed based upon conditional variational autoencoders (CVAE) and the predictor module consists of three deep neural networks trained for predicting enthalpy of formation, volume per atom and energy per atom chosen to demonstrate the proposed method. The predictor and generator modules have been developed using a one hot key representation of the material composition. A series of tests were done to examine the robustness of the predictor models, to demonstrate the continuity of the latent material space, and its ability to generate materials exhibiting target property values. The DING architecture proposed in this paper can be extended to other properties based on which the chemical space can be efficiently explored for interesting materials/molecules.</div
MEMES: Machine learning framework for Enhanced MolEcular Screening
In drug discovery applications, high throughput virtual screening exercises are routinely performed to determine an initial set of candidate molecules referred to as "hits". In such an experiment, each molecule from large small-molecule drug library is evaluated for physical property such as the docking score against a target receptor. In real-life drug discovery experiments, the drug libraries are extremely large but still a minor representation of the essentially infinite chemical space, and evaluation of physical property for each molecule in the library is not computationally feasible. In the current study, a novel Machine learning framework for Enhanced MolEcular Screening ("MEMES") based on Bayesian optimization is proposed for efficient sampling of chemical space. The proposed framework is demonstrated to identify 90% of top-1000 molecules from a molecular library of size about 100 million, while calculating the docking score only for about 6% of the complete library. We believe that such a framework would tremendously help to reduce the computational effort in not only drug-discovery but also areas that require such high-throughput experiments
DeepSPInN - Deep reinforcement learning for molecular Structure Prediction from Infrared and 13C NMR spectra
Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and interpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure when given Infrared and 13C Nuclear magnetic resonance spectra by formulating the molecular structure prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and 13C nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated molecular spectral analysis
Towered Actor Critic For Handling Multiple Action Types In Reinforcement Learning For Drug Discovery
Reinforcement learning (RL) has made significant progress in both abstract and real-world domains, but the majority of state-of-the-art algorithms deal only with monotonic actions. However, some applications require agents to reason over different types of actions. Our application simulates reaction-based molecule generation, used as part of the drug discovery pipeline, and includes both uni-molecular and bi-molecular reactions. This paper introduces a novel framework, towered actor critic (TAC), to handle multiple action types. The TAC framework is general in that it is designed to be combined with any existing RL algorithms for continuous action space. We combine it with TD3 to empirically obtain significantly better results than existing methods in the drug discovery setting. TAC is also applied to RL benchmarks in OpenAI Gym and results show that our framework can improve, or at least does not hurt, performance relative to standard TD3