161 research outputs found
Multi-score Learning for Affect Recognition: the Case of Body Postures
An important challenge in building automatic affective state
recognition systems is establishing the ground truth. When the groundtruth
is not available, observers are often used to label training and testing
sets. Unfortunately, inter-rater reliability between observers tends to
vary from fair to moderate when dealing with naturalistic expressions.
Nevertheless, the most common approach used is to label each expression
with the most frequent label assigned by the observers to that expression.
In this paper, we propose a general pattern recognition framework
that takes into account the variability between observers for automatic
affect recognition. This leads to what we term a multi-score learning
problem in which a single expression is associated with multiple values
representing the scores of each available emotion label. We also propose
several performance measurements and pattern recognition methods for
this framework, and report the experimental results obtained when testing
and comparing these methods on two affective posture datasets
Subcortical Brain and Behavior Phenotypes Differentiate Infants With Autism Versus Language Delay
Background Younger siblings of children with autism spectrum disorder (ASD) are themselves at increased risk for ASD and other developmental concerns. It is unclear if infants who display developmental concerns, but are unaffected by ASD, share similar or dissimilar behavioral and brain phenotypes to infants with ASD. Most individuals with ASD exhibit heterogeneous difficulties with language, and their receptive-expressive language profiles are often atypical. Yet, little is known about the neurobiology that contributes to these language difficulties. Methods In this study, we used behavioral assessments and structural magnetic resonance imaging to investigate early brain structures and associations with later language skills. High-risk infants who were later diagnosed with ASD (n = 86) were compared with high-risk infants who showed signs of early language delay (n = 41) as well as with high- and low-risk infants who did not have ASD or language delay (n = 255 and 143, respectively). Results Results indicated that diminished language skills were evident at 12 months in infants with ASD and infants with early language delay. At 24 months of age, only the infants with ASD displayed atypical receptive-expressive language profiles. Associations between 12-month subcortical volumes and 24-month language skills were moderated by group status, indicating disordinal brain-behavior associations among infants with ASD and infants with language delay. Conclusions These results suggest that there are different brain mechanisms influencing language development in infants with ASD and infants with language delay, and that the two groups likely experience unique sets of genetic and environmental risk factors
COVID-19 vaccination uptake in people with epilepsy in Wales
Purpose
People with epilepsy (PWE) are at increased risk of severe COVID-19. Assessing COVID-19 vaccine uptake is therefore important. We compared COVID-19 vaccination uptake for PWE in Wales with a matched control cohort.
Methods
We performed a retrospective, population, cohort study using linked, anonymised, Welsh electronic health records within the Secure Anonymised Information Linkage (SAIL) Databank (Welsh population=3.1 million).We identified PWE in Wales between 1st March 2020 and 31st December 2021 and created a control cohort using exact 5:1 matching (sex, age and socioeconomic status). We recorded 1st, 2nd and booster COVID-19 vaccinations.
Results
There were 25,404 adults with epilepsy (127,020 controls). 23,454 (92.3%) had a first vaccination, 22,826 (89.9%) a second, and 17,797 (70.1%) a booster. Comparative figures for controls were: 112,334 (87.8%), 109,057 (85.2%) and 79,980 (62.4%).PWE had higher vaccination rates in all age, sex and socioeconomic subgroups apart from booster uptake in older subgroups. Vaccination rates were higher in older subgroups, women and less deprived areas for both cohorts. People with intellectual disability and epilepsy had higher vaccination rates when compared with controls with intellectual disability.
Conclusions
COVID-19 vaccination uptake for PWE in Wales was higher than that for a matched control group
Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers
Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments
Inclusive electron scattering off the deuteron has been measured to extract
the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer
(CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement
covers the entire resonance region from the quasi-elastic peak up to the
invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum
transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous
measurements of the proton structure function F2 and cover a similar
two-dimensional region of Q2 and Bjorken variable x. Determination of the
deuteron F2 over a large x interval including the quasi-elastic peak as a
function of Q2, together with the other world data, permit a direct evaluation
of the structure function moments for the first time. By fitting the Q2
evolution of these moments with an OPE-based twist expansion we have obtained a
separation of the leading twist and higher twist terms. The observed Q2
behaviour of the higher twist contribution suggests a partial cancellation of
different higher twists entering into the expansion with opposite signs. This
cancellation, found also in the proton moments, is a manifestation of the
"duality" phenomenon in the F2 structure function
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
- …