9 research outputs found

    Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study

    Get PDF
    Objectives: We examined whether providing a quantitative report (QReport) of regional brain volumes improves radiologists’ accuracy and confidence in detecting volume loss, and in differentiating Alzheimer’s disease (AD) and frontotemporal dementia (FTD), compared with visual assessment alone. Methods: Our forced-choice multi-rater clinical accuracy study used MRI from 16 AD patients, 14 FTD patients, and 15 healthy controls; age range 52–81. Our QReport was presented to raters with regional grey matter volumes plotted as percentiles against data from a normative population (n = 461). Nine raters with varying radiological experience (3 each: consultants, registrars, ‘non-clinical image analysts’) assessed each case twice (with and without the QReport). Raters were blinded to clinical and demographic information; they classified scans as ‘normal’ or ‘abnormal’ and if ‘abnormal’ as ‘AD’ or ‘FTD’. Results: The QReport improved sensitivity for detecting volume loss and AD across all raters combined (p = 0.015* and p = 0.002*, respectively). Only the consultant group’s accuracy increased significantly when using the QReport (p = 0.02*). Overall, raters’ agreement (Cohen’s Îș) with the ‘gold standard’ was not significantly affected by the QReport; only the consultant group improved significantly (Îșs 0.41➔0.55, p = 0.04*). Cronbach’s alpha for interrater agreement improved from 0.886 to 0.925, corresponding to an improvement from ‘good’ to ‘excellent’. Conclusion: Our QReport referencing single-subject results to normative data alongside visual assessment improved sensitivity, accuracy, and interrater agreement for detecting volume loss. The QReport was most effective in the consultants, suggesting that experience is needed to fully benefit from the additional information provided by quantitative analyses. Key Points: ‱ The use of quantitative report alongside routine visual MRI assessment improves sensitivity and accuracy for detecting volume loss and AD vs visual assessment alone. ‱ Consultant neuroradiologists’ assessment accuracy and agreement (kappa scores) significantly improved with the use of quantitative atrophy reports. ‱ First multi-rater radiological clinical evaluation of visual quantitative MRI atrophy report for use as a diagnostic aid in dementia

    On pre-messenger RNA and transcriptons a review

    No full text

    Cytosine Arabinoside

    No full text

    Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis

    No full text
    Importance: Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. Objectives: To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. Data Sources: PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. Study Selection: Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. Data Extraction and Synthesis: Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. Main Outcome and Measure: The cNfL levels adjusted for age and sex across diagnoses. Results: Data were collected for 10059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. Conclusions and Relevance: These data support the use of cNfL as a bioma

    Physics and technology of the Next Linear Collider: a report submitted to Snowmass '96

    No full text
    We present the current expectations for the design and physics program of an e+e- linear collider of center of mass energy 500 GeV -- 1 TeV. We review the experiments that would be carried out at this facility and demonstrate its key role in exploring physics beyond the Standard Model over the full range of theoretical possibilities. We then show the feasibility of constructing this machine, by reviewing the current status of linear collider technology and by presenting a precis of our `zeroth-order' design

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore