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Automated quantitative MRI volumetry reports support diagnostic
interpretation in dementia: a multi-rater, clinical accuracy study
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Abstract
Objectives We examined whether providing a quantitative report (QReport) of regional brain volumes improves radiologists’
accuracy and confidence in detecting volume loss, and in differentiating Alzheimer’s disease (AD) and frontotemporal dementia
(FTD), compared with visual assessment alone.
Methods Our forced-choice multi-rater clinical accuracy study used MRI from 16 AD patients, 14 FTD patients, and 15 healthy
controls; age range 52–81. Our QReport was presented to raters with regional grey matter volumes plotted as percentiles against
data from a normative population (n = 461). Nine raters with varying radiological experience (3 each: consultants, registrars,
‘non-clinical image analysts’) assessed each case twice (with and without the QReport). Raters were blinded to clinical and
demographic information; they classified scans as ‘normal’ or ‘abnormal’ and if ‘abnormal’ as ‘AD’ or ‘FTD’.
Results The QReport improved sensitivity for detecting volume loss and AD across all raters combined (p = 0.015* and p = 0.002*,
respectively). Only the consultant group’s accuracy increased significantly when using the QReport (p= 0.02*). Overall, raters’
agreement (Cohen’s κ) with the ‘gold standard’ was not significantly affected by the QReport; only the consultant group improved
significantly (κs 0.41➔0.55, p= 0.04*). Cronbach’s alpha for interrater agreement improved from 0.886 to 0.925, corresponding to an
improvement from ‘good’ to ‘excellent’.
Conclusion Our QReport referencing single-subject results to normative data alongside visual assessment improved sensitivity,
accuracy, and interrater agreement for detecting volume loss. The QReport was most effective in the consultants, suggesting that
experience is needed to fully benefit from the additional information provided by quantitative analyses.
Key Points
• The use of quantitative report alongside routine visual MRI assessment improves sensitivity and accuracy for detecting volume
loss and AD vs visual assessment alone.

•Consultant neuroradiologists’ assessment accuracy and agreement (kappa scores) significantly improved with the use of quantitative
atrophy reports.

• First multi-rater radiological clinical evaluation of visual quantitative MRI atrophy report for use as a diagnostic aid in dementia.
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Abbreviations
AD Alzheimer’s disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
BPF Brain parenchymal fraction
CAU Caudate
CNR Contrast-to-noise ratio
FTD Frontotemporal dementia
GIF Geodesic information flows
GM Grey matter
QNI Quantitative neuroradiology initiative
QReport Quantitative volumetry report
SNR Signal-to-noise ratio
WM White matter

Introduction

Brain magnetic resonance imaging (MRI) is regularly
used in diagnosing dementia as it visualises the struc-
tural changes caused by neurodegeneration [1, 2]. In
particular, MRI is key in defining subtle differences
between healthy and pathological cerebral volume loss
and between dementia subtypes [3]. These changes can
be challenging to identify in both research and clinical
settings, as evidenced by moderate interrater variability
[4].

Several visual rating scales have been developed to
enable reproducible semiquantitative assessment of vol-
ume loss [5–10]. They have been shown to reduce
interrater variability to such a degree that they are used
in clinical trials [11–13]. However, these scales have a
subjective element and their application relies heavily
on the prior experience of the radiologist using them.
Furthermore, they have poor sensitivity to subtle or pro-
dromal changes and have ceiling and/or floor effects
[4]. These shortcomings can be addressed by using total
and regional volume quantification, which has been
used as an outcome measure in research studies and
clinical trials [11, 14, 15]. It has been suggested that
quantification can also improve diagnostic accuracy, re-
liability, confidence, and efficiency by providing region-
specific volumetric differences between single subjects
and an age-matched normative population [16–21]. The
clinical introduction of volume quantification is however
predicated upon technical and clinical validation, as well
as compliance with mandatory governance regulations
[22–24].

We have developed a pipeline that automatically gen-
erates a novel and clinically usable quantitative report
(QReport—Fig. 1). The segmentation algorithm we have

used is Geodesic Information Flows (GIF), which is part
of the in-house software NiftySeg (http://niftyweb.cs.ucl.
ac.uk/program.php?p=GIF) [25]. Our pipeline integrates
and displays a patient’s demographic information, MRI
qua l i t y con t r o l me t r i c s , G IF ’ s h i ppoc ampa l
segmentation, and volumetric results contextualised
against a normative population. The QReport generates
a ‘rose plot’ representation, which displays complex 3D
data in a visually simple and easily interpreted 2D
format [26]. Evaluation of most commercial reports
has been limited to CE and FDA approval; this study
aims to fulfil step 4 in the Quantitative Neuroradiology
Initiative (QNI) six-step framework by evaluating how
the QReport affects clinical accuracy [24].

In this study, we assessed the effect of our QReport
across two diagnostic steps and three neuroradiological
levels of experience. We hypothesised (1) that the use
of our QReport will decrease interrater variability whilst
increasing diagnostic specificity, sensitivity, accuracy,
and confidence (a) for determining the presence of vol-
ume loss and (b) for determining the differential diag-
nosis of AD or FTD; and (2) that the QReport’s effect
will be identifiable across the three experience levels.

Methods

Patient dataset

We established a test set of MRI scans from 45 subjects
scanned locally, using three different 3-T MRI systems (see
supplementary material for acquisition parameters). Fifteen
‘control subjects’ were referred to our specialist clinic on
memory concerns but deemed to fall within normal ranges
upon neurological, cerebrospinal fluid (CSF) and imaging as-
sessment. MMSE scores have been included as a marker of
cognitive performance (see Table 1).

�Fig. 1 Quantitative report (QReport) of an AD patient displaying
demographics, hippocampal volume percentiles, and single-subject
brain parenchymal fraction (red dot) plotted against a normative
dementia-free population. Quality control metrics and a ‘rose plot’
representation of GM volume percentiles split by brain lobe and
relevant sub-regions. The rose plot is on a log scale and uses a traffic
light colour-coding system (green to red meaning high to low percentile)
to display the individual’s volume percentiles in the context of a healthy
population. Abbreviations: BPF, brain parenchymal fraction; SNR,
signal-to-noise ratio; CNR, contrast-to-noise ratio; GM, grey matter;
WM, white matter; CAU, caudate

Eur Radiol

http://niftyweb.cs.ucl.ac.uk/program.php?p=GIF
http://niftyweb.cs.ucl.ac.uk/program.php?p=GIF


Thirty patients were diagnosed with either AD (n = 16,
beta-amyloid 1–42 < 550 pg/mL and tau:amyloid ratio > 1)

or FTD (n = 14), based on clinical evaluation and CSF
markers. MMSE scores and disease duration are provided in
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Table 1. All data were acquired under ethical approval by the
Queen Square ethics committee: 13 LO 0005 and 12 LO
1504.

Reference dataset

The normative healthy control data were derived from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (n = 382; age range 56–90 years) (adni.loni.usc.edu)
augmented by the Track-HD study cohort [27] to include
younger controls (n = 79; age range = 30–65 years) thereby
covering a clinically appropriate age range. The total norma-
tive population was n = 461 (51.4% female), and the mean age
was 70.09 years, SD = 12.05. Subject data in the ‘reference
dataset’ were acquired under the ethical agreements in place
for ADNI and TRACK-HD studies.

Quantification and display of grey matter volumes

Whole brain, grey matter, and relevant regional volumes
were estimated for all participants using Geodesic
Information Flows (GIF). GIF provides fully automated
multi-atlas segmentation and global and region-specific
volumetry of T1-weighted scans. It has been validated
in manual segmentation studies both in dementia and
other neurodegenerative disorders [25, 28–30]. This is
especially relevant for the comparison of morphological-
ly different subjects, as examined in this study [25, 31].
We developed an automated pipeline that presents data
in a clinically usable report format (Fig. 1) displaying
non-identifying demographics, hippocampal volume per-
centiles, and brain parenchymal fraction plotted against
normative population data. Regional brain volumes were
expressed as percentile estimates against a Gaussian

Fig. 2 Screenshot from theQuantitative Neuroradiology Initiative (QNI) study website (http://qni.cs.ucl.ac.uk) showing the image viewer for a case with
the QReport available. QReports were fully interactive and zoomable via the website

Table 1 Characteristics of the test subject data set. Mean age was
matched across subjects, mean Abeta 1–42 was reduced and mean Tau
was raised for AD subjects relative to controls. Mean MMSE was

significantly lower for AD (p < 0.001) and FTD (p = 0.03) when
compared with ‘controls’. Mean disease duration (time from first
reported symptom to MRI) in y is also shown

Controls (n = 15) AD (n = 16) FTD (n = 14) Total (n = 45)

Age in years, mean (SD) 60 (8.7) 61.7 (6.6) 59.9 (7.3) 60.6 (7.4)

Gender male:female 4:11 9:7 11:3 24:21

Mean Abeta 1–42 (pg/mL) 878.8 393.3 747.7 –

Mean Tau (pg/mL) 373.3 855.2 302.6 –

MMSE, mean (SD) 26.9 (4) 20.5 (6.4) 22 (9.1) –

Disease duration in years, mean (SD) – 2.7 (1.6) 3.5 (2.4) –
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distribution approximation of healthy control grey mat-
ter volumes, after regressing out age, gender, and total
intracranial volume. We used a variant of a generalised
logistic function to predict the values of our observa-
tional normative database as a continuous variable. This
allowed us to compute the cumulative distribution func-
tion of measured values with respect to the normative
population. Data were displayed in a visually simple
and intuitive ‘rose plot’ format.

Study design

Three groups of raters participated in this study: consul-
tant neuroradiologists; neuroradiology specialty regis-
trars; and non-clinical image analysts. Raters were invit-
ed from multiple centres, ensuring a broad representa-
tion of training and experience. Raters were blinded to
all clinical and demographic information except for age
and gender. We designed a website platform (Fig. 2) to
facilitate remote participation. The website included
thorough instructions (see supplementary material)
followed by 45 scans displayed once with and once
without the QReport available. In order to mitigate
against systematic learning or anchoring effects, scans
were automatically randomised and delivered to raters
in a unique order per rater through our rating website.
The task consisted of 90 evaluation ‘episodes’ in total.

At each ‘episode’, raters were prompted to give their
assessment, stating (1.a) whether the scan was ‘normal’
or ‘abnormal’ in terms of volume loss for age; (1.b)
degree of confidence on a scale of 1 (very uncertain)
to 5 (very confident); (2.a) if the scan was rated abnor-
mal, to select AD or FTD; and (2.b) their confidence
level for this differential diagnosis (1–5 scale). Raters
completed the exercise over a period of 2 months; rat-
ings were collected through the web platform and sub-
sequently analysed.

Statistical analysis

We explored the effects of QReport availability on the
accuracy of (1) identifying volume loss (normal versus
abnormal) and (2) differential diagnosis of AD versus
FTD. Key signal-detection indices were calculated using
the following ratings: (a) correctly defined as ‘abnor-
mal’ (‘true positive’ for AD/FTD), and ‘normal’ (‘true
negative’ for healthy controls) and (b) incorrectly de-
fined as ‘abnormal’ (‘false positive’ for healthy controls)
and ‘normal’ (‘false negative’ for patients). Using these
metrics, diagnostic sensitivity, specificity, and accuracy
were calculated and expressed as percentages as
follows:

Accuracy

¼ True Positivesþ True Negatives
True Positivesþ True Negativesþ False Positivesþ False Negatives

� 100

Sensitivity ¼ True Positives
True Positivesþ False Negatives

� 100

Specificity ¼ True Negatives
True Negativesþ False Positives

� 100

Subsequently, counts of correctly and incorrectly di-
agnosed scans with and without the QReport available
were analysed with the McNemar test. Paired t tests
were used to assess mean diagnostic accuracy, specific-
ity, and sensitivity across the two conditions (QReport
present vs absent). Cohen’s kappa was calculated to
assess agreement between raters’ evaluations and con-
firmed diagnosis while accounting for ‘chance’ agree-
ment. To further assess the effect of the QReport’s
availability on consistency and reliability among raters,
Cronbach’s alpha and intraclass correlation coefficients
were calculated.

Confidence ratings (QReport vs no QReport) were
calculated as a grand mean per rater and for each ‘true’
disease type (normal, AD, FTD) and assessed with
paired t tests. In exploratory analyses rating, normal vs
abnormal, we hypothesised that the effects of the
QReport on confidence and diagnostic ratings could
vary depending on whether the rated scans were normal
or abnormal and whether the raters correctly classified
the scans and the experience level of the raters. A four-
way mixed ANOVA, including all factors (QReport ×
normality × correctness × experience level), allowed us
to assess how these factors interact.

All statistical analyses were performed with SPSS version 24.

Results

Assessment accuracy

Volume loss: normal vs abnormal

For all raters combined, the availability of the QReport
significantly improved the diagnostic sensitivity (p =
0.015*), without changing the specificity or accuracy.
However, for accuracy, a beneficial medium effect size
(0.53) was observed. Of the 3 rating groups, only the
consultant group’s accuracy improved significantly,
from 71 to 80% (p = 0.02*) (Table 2).
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AD vs FTD

The presence of the QReport significantly improved sensitiv-
ity for AD in the image analysts (p = 0.01*) and for all raters
combined (p = 0.002*) (Table 3). There were no significant
changes in diagnosing FTD (Table 4). In absolute terms, the
number of correct diagnoses of AD and FTD increased with
the report by 6.9% and 5.6%, respectively, with a medium
effect size for AD, but these changes were not significant.

Assessment confidence

For rating normal vs abnormal, using a four-way mixed
ANOVA (QReport × normality × correctness × experience
level), we found a normality × correctness × QReport

interaction, indicating significantly increased confidence
when incorrectly rating abnormal scans with the QReport
(i.e. false-positive judgement). These findings represent a sta-
tistically significant difference (p = 0.02 and F(1,8) = 7.918),
with a small effect size (η2p = 0.497), which did not vary
across experience level groups. Raters were also significantly
more confident:

1. With the QReport than without, regardless of correctness
[F(1,8) = 6.64, p = 0.03, η2p = 0.453]

2. When correctly rating, regardless of QReport use
[F(1,8) = 112.43, p = < 0.01, η2p = 0.934]

3. When rating abnormal rather than normal scans, regard-
less of QReport use [F(1,8) = 21.68, p = < 0.01, η2p =
0.73]

Table 2 Sensitivity, specificity, and accuracy for normal vs abnormal rating across all experience levels, both with and without the quantitative report

Metric Experience level Without report mean (SD) With report mean (SD) p value d effect size

Sensitivity Consultant 68.9% (5) 80% (10) 0.13 1.4

Registrar 75.5% (8.4) 81.1% (1.9) 0.3 0.8

Image analyst 70% (25.1) 85.5% (10.1) 0.23 0.9

All groups combined 71.5% (13.8) 82.2% (7.6) 0.015* 1.03

Specificity Consultant 75.6% (3.8) 80% (13.3) 0.52 0.43

Registrar 82.2% (10.1) 68.8% (25.2) 0.37 − 0.6
Image analyst 77.7% (3.8) 68.9% (13.8) 0.45 − 0.52
All groups combined 78.5% (6.4) 72.3% (16.8) 0.3 − 0.37

Accuracy Consultant 71.1% (2.2) 80% (2.2) 0.02* 4

Registrar 77.7% (3.8) 77% (9.2) 0.87 − 0.1
Image analyst 72.6% (17.9) 80% (2.2) 0.5 0.46

All groups combined 73.8% (9.5) 79% (5.1) 0.15 0.53

*Statistically significant at < 0.05

Table 3 Sensitivity, specificity, and accuracy for AD vs normal rating across all experience levels, and percentage of correct assessments for AD, both
with and without the quantitative report

Metric experience level Without report mean (SD) With report mean (SD) p value d effect size

Sensitivity Consultant 61.3% (12.9) 75.8% (17) 0.05 0.96

Registrar 79.3% (12.7) 83.9% (4.7) 0.42 0.48

Image analyst 61.7% (45.1) 71.1% (44.4) 0.01* 0.22

All groups combined 67.4% (25.8) 76.9% (24.5) 0.002* 0.37

Specificity Consultant 79.6% (8) 82% (14.6) 0.73 0.2

Registrar 83.1% (7.5) 78. 1% (7.8) 0.46 − 0.65
Image analyst 86.6% (4.2) 77.9% (12.9) 0.31 − 0.9
All groups combined 83.1% (6.6) 79.3% (10.7) 0.3 0.42

Accuracy Consultant 70.7% (3.2) 79.2% (10.9) 0.07 1.05

Registrar 80.3% (2.3) 78.9% (7.4) 0.76 − 0.25
Image analyst 75.8% (16.8) 77.9% (4.2) 0.84 0.17

All groups combined 75.5% (9.6) 78.7% (4.3) 0.38 0.43

Correct AD diagnoses 58.1% (3.4) 65% (4.1) 0.128 0.56

*Statistically significant at < 0.05
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There were no other significant effects on confidence when
using the QReport.

Agreement between raters and gold
standard—Kappa scores

Cohen’s kappa scores for each rater when detecting volume
loss (abnormal) are detailed in Table 5, and for differentiating
between AD or FTD in Table 6. For both assessments, only
the consultant group’s kappa scores increased significantly
when using the QReport (p = 0.038* and p = 0.04*,
respectively).

Agreement and reliability across raters

For rating normal vs abnormal, Cronbach’s alpha for
agreement across all raters showed improvement in

overall rating reliability from 0.886 to 0.925 with the
QReport available, corresponding to an improvement
from ‘good’ to ‘excellent’. The intraclass correlation co-
efficient, assessed using mixed two-way ANOVA across
raters, was 0.454 for single measures and 0.882 for
average measures; with the QReport, these increased to
0.563 and 0.921, respectively.

Power calculations

Based on our observed effect sizes of diagnostic accuracy
(Table 2) for all raters, we have calculated the following sam-
ple size estimations to help inform future studies. To achieve
an 80%, 90%, and 95% chance of observing a positive effect,
30, 40, and 45 raters would be required, respectively.

Table 4 Sensitivity, specificity, and accuracy for FTD vs normal rating across all experience levels, and percentage of correct assessments for FTD,
both with and without the quantitative report

Metric Experience level Without report mean (SD) With report mean (SD) p value d effect size

Sensitivity Consultant 57.3% (4.1) 57.2% (6.2) 0.93 − 0.01
Registrar 36.5% (7.8) 35.2% (23.8) 0.94 − 0.07
Image analyst 46.9% (24.9) 58.3% (20.2) 0.1 0.5

All groups combined 46.9% (16) 50.3% (19.5) 0.52 0.19

Specificity Consultant 89.2% (9.4) 95% (6.5) 0.19 0.71

Registrar 91.1% (9.7) 77.7% (32.7) 0.42 − 0.55
Image analyst 75.5% (28.9) 85.5% (14.5) 0.46 0.43

All groups combined 85.2% (17.6) 86.1% (19.7) 0.89 0.04

Accuracy Consultant 73.6% (4.9) 75.9% (3.6) 0.09 0.53

Registrar 70.5% (11) 65.2% (22.8) 0.52 0.29

Image analyst 69.1% (15.9) 72.6% (14.3) 0.41 0.23

All groups combined 71.1% (10.2) 71.2% (14.4) 0.95 0.01

Correct FTD diagnoses 38.6% (2.2) 44.2% (2.7) 0.367 0.31

Table 5 Kappa scores for normal/abnormal assessments across all
experience levels, both with and without the quantitative report

Experience level Rater# No report With
report

Net
change

p
value

Consultant Al 0.400 0.586 0.186 0.038*
A2 0.469 0.571 0.102

A3 0.381 0.492 0.111

Registrar B1 0.455 0.211 − 0.244 0.68
B2 0.522 0.571 0.05

B3 0.613 0.667 0.054

Image analyst Cl 0.169 0.531 0.362 0.66
C2 0.746 0.556 − 0.19
C3 0.492 0.557 0.065

Overall Mean (SD) 0.48 (0.17) 0.52 (0.13) 0.04 0.34

*Statistically significant at < 0.05

Table 6 Kappa scores for agreement between rated diagnosis and
clinically/CSF-confirmed AD and FTD diagnoses across all experience
levels, both with and without the quantitative report

Experience Level Rater# No report With
report

Net
change

p
value

Consultant Al 0.432 0.531 0.099 0.04*
A2 0.45 0.498 0.048

A3 0.335 0.434 0.099

Registrar B1 0.381 0.22 − 0.161 0.56
B2 0.326 0.428 0.102

B3 0.494 0.391 − 0.103
Image analyst Cl 0.02 0.176 0.156 0.28

C2 0.529 0.496 − 0.033
C3 0.396 0.529 0.133

Overall Mean (SD) 0.37 (0.15) 0.41 (0.13) 0.037 0.39

*Statistically significant at < 0.05
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Discussion

We performed a clinical accuracy study of our quantitative
volumetric report (QReport—Fig. 1). Using an established
segmentation algorithm, Geodesic Information Flows
(GIF) [25], we developed a pipeline that brings together
patient demographic information, hippocampal segmenta-
tion, brain parenchymal fraction, and global- and region-
specific brain volumetry contextualised against a norma-
tive population (Fig. 1). The advantage of our ‘rose plot’
display is the representation of complex 3D data in a visu-
ally simple and easily interpretable 2D format. Our main
aim was to assess the effect of our novel quantitative vol-
umetric report on sensitivity, specificity, and accuracy
across three neuroradiological levels of experience.
Providing our QReport increased the sensitivity of detect-
ing volume loss across all raters and improved the accuracy
and agreement among the consultant group. It also im-
proved sensitivity for diagnosing AD in the image analysts
and for all raters combined, but had no effect on FTD
discrimination. Further to this, the QReport reduced the
variability in accuracy, sensitivity, and kappa scores for
detecting volume loss. In absolute terms, the classification
accuracy increased overall by over 5%. Given the docu-
mented increases in dementia prevalence in recent years
and its future projections [32], this figure could be of clin-
ical importance if confirmed in a larger study population.

Proprietary quantitative tools exist for the assessment of
dementia, such as CorTechs.AI’s ‘Neuroquant’ (https://
www.cortechs.ai/products/neuroquant/tbi/) and Icometrix’s
‘icobrain-dm’ (https://icometrix.com/products/icobrain-dm).
Technical validation of their segmentation algorithms has
been performed versus other segmentation procedures, with
promising results [33, 34]. However, systematic assessment of
their clinical accuracy by neuroradiologists, as addressed in
the current study, has not been published for either, despite
both tools being FDA and CE approved. Our ‘rose plot’
provides more intuitive information than numerical tables of
sub-region volumes and limited visualisations of lobar and
hippocampal volumes alone. There is a major lack of clinical
validation studies in the literature for volumetric neuroradio-
logical tools. In line with our research, a recent study showed
improved identification of patients versus healthy controls for
one of two raters, while both raters improved in the differential
diagnosis of ‘dementing neurodegenerative disorders’ [21].

In a study using non-commercial algorithms, it was shown
that adding lobar and hippocampal volumes to visual inspection
improved the diagnostic accuracy of two experienced neuroradi-
ologists [19], thereby mirroring our findings. This improvement
suggests that experienced neuroradiologists are well placed to
assimilate and make use of the information provided by the
QReport. Furthermore, our consultant group showed the greatest
statistical benefit due to having the least variance in their

assessment performance between the two tasks, which is to be
expected especially when compared with the non-clinical group
(Table 2). Conversely, it is possible that less experienced neuro-
radiologists and non-clinical image analysts were over-reliant on
the QReport for determining abnormality, as suggested by an
overall decrease in specificity, although not significant
(Tables 2 and 3).

When diagnosing a neurodegenerative disease on MR im-
ages, neuroradiologists first assess the presence of volume loss
as well as its distribution. In a second step, they interpret the
pattern to be indicative of a certain disease type, such as AD or
FTD. In this context, it is worth noting that providing the
QReport increased the sensitivity of the first step (the detection
of volume loss across all raters) and improved the accuracy and
agreement among the consultant group. For the differential diag-
nosis, the QReport improved sensitivity for AD in the image
analysts and for all raters combined but had no effect on FTD.
From a diagnostic point of view, providing an objective measure
to reproducibly assess volume loss with a decreased interrater
variability is crucial and could be used clinically in a number
of neurodegenerative diseases. The limited effects on the differ-
ential diagnosis on FTD could be due to the low mean age of
patients (61.7 years for AD and 59.9 years for FTD) and rela-
tively short disease durations (2.7 years for AD and 3.5 years for
FTD) (Table 1). This will have affected the degree of atrophy
present and possiblymade them harder cases to assess. However,
it is also important to identify atrophy in younger patients while it
is still subtle, and it is in these cases especially where a QReport
could help reduce subjective visual disagreement.

Interestingly, confidence in detecting volume loss and differ-
entiating AD and FTD was not significantly affected by the
QReport. Significantly increased confidence was unexpectedly
shown when incorrectly diagnosing volume loss (i.e. false con-
fidence) independent of experience level. One potential explana-
tion is that raters based their incorrect diagnosis on visual inspec-
tion alone and used the QReport to reinforce their diagnosis.
Irrespective of the reason, more work needs to be done to under-
stand andmitigate this finding. It highlights the need for rigorous
validation before clinical adoption and the importance of appro-
priate training to avoid over-reliance on diagnostic aids, comple-
tion of a test case set, and carefully planning and monitoring the
introduction of tools such as the QReport. Rather than a gold
standard, quantitative reports should be considered support tools
which cannot replace neuroradiological experience, and raters
should be wary of over-reliance.

Limitations

Our study was somewhat limited in statistical power, due poten-
tially to the subject sample size or the number of raters used.
However, our sample size of 45 subjects was in line with other
similar studies using between 36 and 52 subjects [17, 19, 20].
The use of nine raterswithin three experience levels enabled us to
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identify the effect of experience when introducing QReports.
Similar work has used a total of 2 raters [19, 20] or a maximum
of 3 raters [17]. The performance of our image analyst groupwas
unexpectedly heterogeneous, likely due to disparity in experience
level. The variability in the results within the image analysts and
registrar groups could also reflect an over-reliance on the report,
rather than using it in addition to the MRI. The ‘control’ group
was half the size of the patient group, which could have contrib-
uted to unexpected decreases in specificity, although not signif-
icant (Tables 2 and 3). Our study therefore underlines the impor-
tance of considering sample sizes and rater groups when devel-
oping and validating such quantitative diagnostic aids. Future
work will need to recruit more raters to better assess the effects
of the report in diagnostic performance, and the moderators of
this effect (see “Power calculations” in the “Results” section).

The ‘control’ subjects were recruited from a clinical popu-
lation who all presented with subjective neurological com-
plaints. It is possible that radiologically normal ‘controls’
had other pathologies, which may have affected our raters’
performance. This was, however, a conscious choice to reflect
the clinical setting in memory clinics. Finally, the incidence
ratio (Controls:AD:FTD), forced-choice nature, and lack of
further clinical data in this study are not a reflection of routine
neuroradiological assessment where more diagnostic options
need to be considered.

Conclusions

The results of this clinical accuracy study demonstrate that quan-
titative volume reports providing single-subject results referenced
to normative data can improve the sensitivity, accuracy, and
inter-observer agreement for detecting volume loss and AD.
This is a crucial step when reporting volume changes in patients
with dementia. The largest beneficial effect of the QReport was
in the consultant group, suggesting they were best placed to
assimilate and make use of the information provided by the
QReport. The differing effects between all three experience
levels highlight the need for studies clarifying the potential ben-
efits and limitations of these reports, and the importance of rig-
orous validation before clinical adoption. Our sample sizes were
low, but the effect sizes across accuracy and sensitivity were
moderate-to-large in favour of a beneficial report effect.
Importantly, a reduced variability in sensitivity, accuracy, and
kappa scores was also noted. We believe our study will help to
inform power calculations and study design for future research in
the field.

Software availability

The software is non-commercial and a QReport can be freely
generated by uploading a T1-weighted scan via this
weblink—http://niftyweb.cs.ucl.ac.uk/program.php?p=
QNID.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-020-07455-8.
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