119 research outputs found

    The emergence of mecC methicillin-resistant Staphylococcus aureus.

    Get PDF
    The report of methicillin-resistant Staphylococcus aureus (MRSA) encoding a divergent mecA gene in 2011 was highly significant. This homologue, designated mecC, poses diagnostic problems with the potential to be misdiagnosed as methicillin-sensitive S. aureus, with important potential consequences for individual patients and for the surveillance of MRSA. mecC MRSA have now been reported from 13 European countries and have been isolated from 14 different host species, with evidence of a recent increase in Denmark. The emergence of mecC MRSA is a topic of interest to human and veterinary microbiology, and we consider it timely to review here its discovery and subsequent investigation.Our work on S. aureus is supported by a Medical Research Council (MRC) Partnership Award to M.A.H and funding to G.K.P from PetPlan Charitable Trust, the British Society for Antimicrobial Chemotherapy, and the Cambridge–Africa Alborada Research Fund.This is the final published version distributed under a Creative Commons Attribution License 2.0, which can also be found on the publisher's website at: http://www.cell.com/trends/microbiology/abstract/S0966-842X(13)00226-

    Genomic Analysis of Companion Rabbit Staphylococcus aureus.

    Get PDF
    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections.This project was supported by internal funding from the School of Biological, Biomedical and Environmental Sciences, University of Hull (GKP), a Medical Research Council (MRC) Partnership Grant (G1001787/1) (MAH and JP), and the Wellcome Trust, Grant number 098051 (JP).This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.015145

    The first report of Listeria monocytogenes detected in pinnipeds

    Get PDF
    The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions’ nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.</p

    Draft Genome Sequence of a Multiresistant Bovine Isolate of Staphylococcus lentus from Tanzania.

    Get PDF
    We report here the draft genome sequence of a Staphylococcus lentus isolate, 050AP, collected in Tanzania from a swab of healthy bovine perineum. The draft genome sequence contained 2.72 Mbp and 2,750 coding sequences with a G+C content of 31.7%

    Detection of mecC-Methicillin-resistant Staphylococcus aureus isolates in river water : a potential role for water in the environmental dissemination

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a public health concern due to limited treatment options. The recent description of a mecA homologue, mecC in human and cattle, led to studies to detect this new variant in human and other animal species. Detection of mecC in wild boar and fallow deer in a Spanish game estate led us to further investigate the presence of mecC-MRSA at this location. Samples from cattle, wild animals, workers and river water were tested. A further three mecC-MRSA isolates were obtained from river water. Molecular characterization (multilocus sequence typing and spa typing) and antimicrobial susceptibility testing (broth microdilution) showed that isolates were similar to those detected in wild animals. Whole genome sequencing confirmed that the isolates from the river water and wild animals in the same geographic area were all closely related isolates of ST425 mecC-MRSA. The presence of mecC-MRSA in the river water highlights the potential role of water in the dissemination of mecC-MRSA

    Comparison of Different Phenotypic Approaches to Screen and Detect mecC-Harboring Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Similar to mecA, mecC confers resistance against beta-lactams, leading to the phenotype of methicillin-resistant Staphylococcus aureus (MRSA). However, mecC-harboring MRSA strains pose special difficulties in their detection. The aim of this study was to assess and compare different phenotypic systems for screening, identification, and susceptibility testing of mecC-positive MRSA isolates. A well-characterized collection of mecC-positive S. aureus isolates (n 111) was used for evaluation. Routinely used approaches were studied to determine their suitability to correctly identify mecC-harboring MRSA, including three (semi)automated antimicrobial susceptibility testing (AST) systems and five selective chromogenic agar plates. Additionally, a cefoxitin disk diffusion test and an oxacillin broth microdilution assay were examined. All mecC-harboring MRSA isolates were able to grow on all chromogenic MRSA screening plates tested. Detection of these isolates in AST systems based on cefoxitin and/or oxacillin testing yielded overall positive agreements with the mecC genotype of 97.3% (MicroScan WalkAway; Siemens), 91.9% (Vitek 2; bioMérieux), and 64.9% (Phoenix, BD). The phenotypic resistance pattern most frequently observed by AST devices was “cefoxitin resistance/oxacillin susceptibility,” ranging from 54.1% (Phoenix) and 83.8% (Vitek 2) to 92.8% (WalkAway). The cefoxitin disk diffusion and oxacillin broth microdilution assays categorized 100% and 61.3% of isolates to be MRSA, respectively. The chromogenic media tested confirmed their suitability to reliably screen for mecC-harboring MRSA. The AST systems showed false-negative results with varying numbers, misidentifying mecC-harboring MRSA as methicillin-susceptible S. aureus. This study underlines cefoxitin’s status as the superior surrogate mecC-positive MRSA marker.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Whole Genome Sequence and Comparative Genomics Analysis of Multi-drug Resistant Environmental Staphylococcus epidermidis ST59

    Get PDF
    Staphylococcus epidermidis is a major opportunistic pathogen primarily recovered from device-associated healthcare associated infections (DA-HAIs). Although S. epidermidis and other coagulase-negative staphylococci (CoNS) are less virulent than Staphylococcus aureus, these bacteria are an important reservoir of antimicrobial resistance genes and resistance-associated mobile genetic elements that can be transferred between staphylococcal species. We report a whole genome sequence of a multidrug resistant S. epidermidis (strain G6_2) representing multilocus sequence type (ST) 59 and isolated from an environmental sampling of a hotel room in London, UK. The genome of S. epidermidis G6_2 comprises of a 2408357 bp chromosome and six plasmids, with an average G+C content of 32%. The strain displayed a multi-drug resistance phenotype which was associated with carriage of 7 antibiotic resistance genes (blaZ, mecA, msrA, mphC, fosB, aacA-aphD, tetK) as well as resistance-conferring mutations in fusA and ileS. Antibiotic resistance genes were located on plasmids and chromosome. Comparative genomic analysis revealed that antibiotic resistance gene composition found in G6_2 was partly preserved across the ST59 lineage

    An adenoviral-vectored vaccine confers seroprotection against capsular group B meningococcal disease

    Get PDF
    Adenoviral-vectored vaccines are licensed for prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus, but, for bacterial proteins, expression in a eukaryotic cell may affect the antigen's localization and conformation or lead to unwanted glycosylation. Here, we investigated the potential use of an adenoviral-vectored vaccine platform for capsular group B meningococcus (MenB). Vector-based candidate vaccines expressing MenB antigen factor H binding protein (fHbp) were generated, and immunogenicity was assessed in mouse models, including the functional antibody response by serum bactericidal assay (SBA) using human complement. All adenovirus-based vaccine candidates induced high antigen-specific antibody and T cell responses. A single dose induced functional serum bactericidal responses with titers superior or equal to those induced by two doses of protein-based comparators, as well as longer persistence and a similar breadth. The fHbp transgene was further optimized for human use by incorporating a mutation abrogating binding to the human complement inhibitor factor H. The resulting vaccine candidate induced high and persistent SBA responses in transgenic mice expressing human factor H. The optimized transgene was inserted into the clinically relevant ChAdOx1 backbone, and this vaccine has now progressed to clinical development. The results of this preclinical vaccine development study underline the potential of vaccines based on genetic material to induce functional antibody responses against bacterial outer membrane proteins
    • …
    corecore