5 research outputs found

    Defining the Anti-Cancer Activity of Tricarbonyl Rhenium Complexes: Induction of G2/M Cell Cycle Arrest and Blockade of Aurora-A Kinase Phosphorylation

    Get PDF
    Rhenium and ruthenium complexes containing N-heterocylic carbene (NHC) ligands and conjugated to indomethacin were prepared. The anticancer properties were probed against pancreatic cell lines, revealing a remarkable activity of the rhenium fragment as anticancer agent. The ruthenium complexes were found to be inactive against the same pancreatic cancer cell lines, either alone or in conjugation with indomethacin. An in-depth biological study revealed the origin of the anticancer properties of the rhenium tricarbonyl fragment, of which a complete elucidation had yet to be achieved. It was found that the rhenium complexes induce cell cycle arrest at the G2/M phase by inhibiting the phosphorylation of Aurora-A kinase. A preliminary study on the structure-activity relationship on a large family of these complexes revealed that the anticancer properties are mainly associated with the lability of the ancillary ligand, with inert complexes showing limited to no anticancer properties

    Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119

    Get PDF
    The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensabl

    Lysophosphatidylinositol-glucagon like peptide 1 crosstalk in metabolic diseases

    No full text
    This PhD thesis discusses the study of a novel class of drugs for the treatment of metabolic diseases. We have characterized the pharmacology and biology of the lipid Oleoyl-lysophosphatidylinositol (Oleoyl-LPI), and we show that some synthetic molecules mimicking its structure, are efficient glucagon-like peptide-1 (GLP-1) secreting drugs in vitro and in vivo in diabetic mice. We have also dissected the pharmacology of Cannabis-derived drugs and demonstrated that they can also modulate GLP-1 secretion

    Photophysical and Biological Properties of Iridium Tetrazolato Complexes Functionalised with Fatty Acid Chains

    No full text
    Five cyclometalated Ir(III) tetrazolato complexes functionalised with fatty acid chains (octanoic, palmitic, stearic, palmitoleic, and oleic) have been synthesised. The fatty acids were chosen to evaluate the potential effect of the length and degree of unsaturation on the biological properties of the complexes for use as cellular imaging agents. The complexes were analysed in both organic and aqueous media to determine if the presence and nature of the fatty acid chains had a significant effect on their photophysical properties. The complexes display green–yellow emission in dichloromethane solutions with relatively long excited state decays, within the range 360–393 ns, and quantum yields between 5.4% and 6.7% (from degassed solutions). Temperature-dependent photophysical studies suggest that the emitting excited states of the complexes might be quenched by the thermal population of dark states. In water, the quantum yields drop within the range of 0.5%–2.4%, and the photophysical measurements are influenced by the variable degrees of aggregation. In general, the entire series displayed low cytotoxicity and relatively high photostability, which are favourable attributes in the design of cellular imaging agents. Images of live HeLa cells were obtained for all the complexes, but those functionalised with palmitic and stearic acids had limitations due the lower solubility conferred by the saturated aliphatic chains. The complexes were mainly detected within the endoplasmic reticulum
    corecore