5,075 research outputs found
Recommended from our members
Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K
Design requirements of next generation electric aircraft place stringent requirements on the power density required from electric motors. Future prototype planned in the scope of European project âAdvanced Superconducting Motor Experimental Demonstratorâ ASuMED considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rate to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, magnetic field and frequency range that is relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G HTS stacks at temperatures below 77 K and frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required
Recommended from our members
Modeling of Trapped Fields by Stacked (RE)BCO Tape Using Angular Transversal Field Dependence
Stacks of superconducting (RE)BCO tape are gaining popularity as a potential alternative for superconducting bulks for trapped field applications. This is partly due to versatility and uniformity of the starting material, allowing for more deterministic prediction of field profile and magnitude. However, most FEM models of trapped field magnets do not incorporate parameters such as critical current and n-value dependence on the angle of applied magnetic field, leading to only qualitative modeling results. More quantitative results can be obtained from incorporating more data for superconductivity and thermal properties of the material. Such models can be used as a starting point for most geometries and both trapped field and current transport modeling problems. An FEM model of a stack of tapes was constructed using the H formulation, incorporating goniometric critical current and n-value measurements. The modeling results were compared to field cooling experiments for stacks of different heights. The experiment and modeling show good agreement.This work was supported in part by the Engineering and Physical Sciences
Research Council, U.K., and in part by SKF S2M, France
Recommended from our members
Analysis of an on-line superconducting cryofan motor for indirect cooling by LH2
This work relates to the study of an electrically powered cryofan for circulating close-loop cooling helium gas for superconducting applications with the following features:
- Absence of any seal that can leak the pumped fluid or provide a path for heat transfer and require maintenance and/or is prone to failures.
- The use of high temperature superconducting (HTS) stacks on the fan-rotor that, below critical temperature, can be magnetized contributing to the driving torque.
The absence of electrically connected equipment as well as the lack of any seal, makes this arrangement especially suitable for reliable cryogenic helium gas circulation. Because HTS stacks cannot provide magnetic flux above Tc, during the initial stages of operation, in the presented study we analyse torque that will be provided by the passive iron components of the machine (reluctance torque, due to the saliency of the rotor) and by auxiliary permanent magnets or alternatively magnetizing coils
Recommended from our members
Computation of Superconducting Stacks Magnetization in an Electrical Machine
Superconducting technology offers the prospect of sharply increase the power density of rotating electrical machines, especially in the low speed, high torque range, with impact in applications such as wind energy and aircraft propulsion. Among the enabling technologies, stacks consisting of piling up layers of high temperature superconductor may provide a source of magnetic flux density for torque production, without the complexity of superconducting wound rotor poles. For this to happen, careful designs, optimizing electromagnetic, mechanical and thermal aspects at the same time, must be developed. In that sense, this work applies a recently developed combined electromagnetic formulation to compute the magnetization level of high temperature superconductor stacks installed in the airgap of an electrical motor after field cooling magnetization. The results are congruent with the applied field, show a strong interaction between teeth and stacks and provide a way of initializing the state of the machine prior to operation.Horizon 2020 research innovation programme under grant agreement No 7231119 (ASuMED consortium) and EPSRC grant EP/P000738/
Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide
The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R), triggering ATP release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca(2+)]i) responses in the surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation.We studied neuroinflammation in vivo using the 2,4-dinitrobenzenesulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43) [GFAPâ·Cre (ERT2+/-)/Cx43(f/f) ] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO) synthase (iNOS (-/-)) were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca(2+) and NO imaging were used to monitor glial [Ca(2+)]i and [NO]i.Purinergic activation of enteric glia drove [Ca(2+)]i responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO.Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders
Bimodal imaging of inflammation with SPECT/CT and MRI using iodine-125 labeled VCAM-1 targeting microparticle conjugates
Upregulation of cell adhesion molecules on endothelial cells is a hallmark of inflammation and an early feature of several neurological conditions. Here, we describe bimodal in vivo imaging of this inflammatory event in the brain using functionalized micron-sized particles of iron oxide. The particles were conjugated to anti-VCAM-1 antibodies and subsequently labeled with iodine-125. Radiolabeling of the antibody-coated particles was straightforward and proceeded in high radiochemical yields using commercially available iodination tubes. The corresponding contrast agent was evaluated in a rat model of cerebral inflammation based on intracerebral injection of tumor necrosis factor alpha and a rat model of status epilepticus. Biodistribution studies and phosphorimaging of cryosections were used to verify in vivo imaging data obtained with single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). The contrast agent showed rapid and highly localized binding to the vasculature of inflamed brain tissue, and was effectively cleared from the blood pool within 2 min postinjection. Overall, the pattern of hypointensities observed with MRI was in good agreement with the distribution of the contrast agent as determined with SPECT and phosphorimaging; however, conspicuous differences in the signal intensities were observed. The results demonstrate that radiolabeled micron-sized particles of iron oxide enable multimodal in vivo imaging with MRI and nuclear techniques, and highlight the value of validating different imaging methods against one another
Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility
Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion
Recommended from our members
Magnetic levitation using a stack of high temperature superconducting tape annuli
Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.The authors would like to acknowledge the financial support of SKF S2M, the magnetic bearing division of SKF, the Isaac Newton Trust, Cambridge and EPSRC
- âŠ