18 research outputs found

    Case Report of Undifferentiated Endometrial Sarcoma in Association with Osteoclast-Like Giant Cells

    Get PDF
    We describe the clinical, gross and microscopic features of undifferentiated uterine stromal sarcoma associated with osteoclast-like giant cells. A case of low-grade endometrial stromal sarcoma is already described in association with osteoclast-like giant cells; however, the current case differs in that the tumor was a high grade and did not show any evidence of smooth muscle or epithelioid differentiation and was shown to be strongly positive for CD10 and focally for WT-1 and Inhibin supporting an endometrial stromal origin. The associated osteoclast-like giant cells were abundant, evenly distributed within the tumor and showed strong positivity for CD68. Interestingly, rare (less than 2%) giant cells also showed weak cytoplasmic positivity for b-hCG. The tumor infiltrated deep into the myometrium and had marked lymphovascular invasion. Although the regional lymph nodes and peritoneal washings were negative, the lesion showed a highly aggressive clinical course. Despite treatment, the tumor disseminated within the abdominal cavity and lungs and ultimately led to the patient's demise within 9 months of the diagnosis

    Is Proton Therapy a “Pro” for Breast Cancer? A Comparison of Proton vs. Non-proton Radiotherapy Using the National Cancer Database

    Get PDF
    Background: Limited data exists demonstrating the clinical benefit of proton radiotherapy (PRT) in breast cancer. Using the National Cancer Database, we evaluated predictors associated with PRT use for patients with breast cancer. An exploratory analysis also investigates the impact of PRT on overall survival (OS).Methods: Patients with non-metastatic breast cancer treated with adjuvant radiotherapy from 2004 to 2014 were identified. Patients were stratified based on receipt of PRT or non-PRT (i.e., photons ± electrons). A logistic regression model was used to determine predictors for PRT utilization. For OS, Multivariable analysis (MVA) was performed using Cox proportional hazard model.Results: A total of 724,492 patients were identified: 871 received PRT and 723,621 received non-PRT. 58.3% of the PRT patients were group stage 0–1. Median follow-up time was 62.2 months. On multivariate logistic analysis, the following factors were found to be significant for receipt of PRT (all p < 0.05): academic facility (odds ratio [OR] = 2.50), South (OR = 2.01) and West location (OR = 12.43), left-sided (OR = 1.21), ER-positive (OR = 1.59), and mastectomy (OR = 1.47); pT2-T4 disease predicted for decrease use (OR = 0.79). PRT was not associated with OS on MVA for all patients: Hazard Ratio: 0.85, p = 0.168. PRT remained not significant on MVA after stratifying for subsets likely associated with higher heart radiation doses, including: left-sided (p = 0.140), inner-quadrant (p = 0.173), mastectomy (p = 0.095), node positivity (p = 0.680), N2-N3 disease (p = 0.880), and lymph node irradiation (LNI) (p = 0.767).Conclusions: Receipt of PRT was associated with left-sided, ER+ tumors, mastectomy, South and West location, and academic facilities, but not higher group stages or LNI. PRT was not associated with OS, including in subsets likely at risk for higher heart doses. Further studies are required to determine non-OS benefits of PRT. In the interim, given the high cost of protons, only well-selected patients should receive PRT unless enrolled on a clinical trial

    Proton vs. Photon Radiation Therapy for Primary Gliomas: An Analysis of the National Cancer Data Base

    Get PDF
    Background: To investigate the impact of proton radiotherapy (PBT) on overall survival (OS) and evaluate PBT usage trends for patients with gliomas in the National Cancer Data Base (NCDB).Methods: Patients with a diagnosis of World Health Organization (WHO) Grade I-IV glioma treated with definitive radiation therapy (RT) between the years of 2004–13 were identified. Patients were stratified based on WHO Grade and photon radiotherapy (XRT) vs. PBT. Univariate (UVA) and multivariable analysis (MVA) with OS were performed by Cox proportional hazards model and log-rank tests. Propensity score (PS) weighting was utilized to account for differences in patient characteristics and to minimize selection bias.Results: There were a total of 49,405 patients treated with XRT and 170 patients treated with PBT. Median follow-up time was 62.1 months. On MVA, the following factors were associated with receipt of PBT (all p < 0.05): WHO Grade I-II gliomas, treatment at an academic/research program, west geographic facility location, and surgical resection. After PS weighting, all patients treated with PBT were found to have superior median and 5 year survival than patients treated with XRT: 45.9 vs. 29.7 months (p = 0.009) and 46.1 vs. 35.5% (p = 0.0160), respectively.Conclusions: PBT is associated with improved OS compared to XRT for patients with gliomas. This finding warrants verification in the randomized trial setting in order to account for potential patient imbalances not adequately captured by the NCDB, such as tumor molecular characteristics and patient performance status.Importance of the Study: This is the first study that compares the outcomes of patients treated with photon based radiotherapy vs. proton based radiotherapy for patients with gliomas. In this retrospective analysis, the results demonstrate that proton therapy is associated with improved outcomes which support ongoing prospective, randomized clinical trials comparing the two modalities in patients with gliomas

    Albendazole sensitizes cancer cells to ionizing radiation

    No full text
    Abstract Background Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Methods Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. Results ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Conclusions Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted.</p

    Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma

    No full text
    Melanoma is the most aggressive and deadly form of skin cancer. The current standard of care produces response rates of less than 20%, underscoring the critical need for identification of new effective, nontoxic therapies. Disulfiram (DSF) was identified using a drug screen as one of the several compounds that preferentially decreased proliferation in multiple melanoma subtypes compared with benign melanocytes. DSF, a member of the dithiocarbamate family, is a copper (Cu) chelator, and Cu has been shown previously to enhance DSF-mediated growth inhibition and apoptosis in cancer cells. Here, we report that in the presence of free Cu, DSF inhibits cellular proliferation and induces apoptosis in a panel of cell lines representing primary and metastatic nodular and superficial spreading melanoma. Both decreased cellular proliferation and increased apoptosis were seen at 50-500nmol/l DSF concentrations that are achievable through oral dosing of the medication. In the presence of Cu, DSF caused activation of the extrinsic pathway of apoptosis as measured by caspase-8 cleavage. The addition of Z-IETD-FMK, a selective caspase-8 inhibitor, was protective against DSF-Cu-induced apoptosis. Production of reactive oxygen species (ROS) in response to DSF-Cu treatment preceded the induction of apoptosis. Both ROS production and apoptosis were prevented by coincubation of N-acetyl cysteine, a free radical scavenger. Our study shows that DSF might be used to target both nodular and superficial spreading melanoma through ROS production and activation of the extrinsic pathway of apoptosis. Melanoma Res 20:11-20 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins

    BRAF inhibitors and radiotherapy for melanoma brain metastases: potential advantages and disadvantages of combination therapy.

    No full text
    Melanoma is an aggressive malignancy that frequently spreads to the brain, resulting in rapid deterioration in both quality and quantity of life. Historically, treatment options for melanoma brain metastases (MBM) have predominantly consisted of surgery and radiotherapy. While these options can help provide local control, the majority of patients still develop intracranial progression. Indeed, novel therapeutic options, including molecularly targeted agents and immunotherapy, have improved outcomes and are now changing the role of radiotherapy. Up to 50% of melanomas contain an activating BRAF mutation, resulting in hyperactive cellular proliferation and survival. Drugs that target BRAF have been introduced for the treatment of metastatic melanoma and offer hope in improving disease outcomes; however, many of these trials either excluded or had a limited amount of patients with MBM. Recent studies have revealed that melanoma cell lines become more radiosensitive following BRAF inhibition, thus providing a potential synergistic mechanism when combining BRAF inhibitor (BRAFi) and radiotherapy. However, neurotoxicity concerns also exist with this combination. This article reviews the efficacy and limitations of BRAFi therapy for MBM, describes current evidence for combining BRAFis with radiation, discusses the rationale and evidence for combination modalities, and highlights emerging clinical trials specifically investigating this combination in MBM
    corecore