6 research outputs found

    Natural and Synthetic Antioxidants Prevent the Degradation of Vitamin D3 Fortification in Canola Oil during Baking and In Vitro Digestion

    No full text
    International audienceVitamin D insufficiency is widespread in the northern and partly equatorial hemisphere countries. Fortification of vitamin D in commonly consumed vegetable oils can prevent rickets in children, osteoporosis and bone fractures in adults. Avoiding the loss of vitamin D3 fortification in oils during cooking is beneficial for consumer’s health. The aim of this work was to investigate the stability of cholecalciferol (vitamin D3) fortification in canola oil during baking at 80 to 230°C for 10 to 40 min. The natural antioxidants (Îē-carotene and Îą-tocopherol) and the synthetic ones (butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ)) were used to prevent the degradation of vitamin D3. The kinetic degradation of vitamin D3, oxidative status of canola oil and the bioaccessibility in in vitro digestion were assessed. Vitamin D3 was relatively stable at 80 and 130°C for 10 to 40 min. High temperatures of 180 and 230°C caused the highest loss of vitamin D3 being up to 90%. Reaction rate of vitamin D3 degradation ranged from 2.01 to 6.80 × 10–2 sec–1. BHT and TBHQ had the highest antioxidant activity (> 50 %) to decrease the degradation of vitamin D3 at 230°C. The oxidative status (peroxide value, malondialdehyde content) of canola oil was improved after incorporating antioxidant agents. The vitamin D3 bioaccessibility was increased 1.5 fold after in vitro digestion. The consumption of 5 g brownie containing vitamin D3 100 Ξg/L and antioxidant agents 180 mg/L in 1 mL of canola oil would cover the daily intake

    Natural and Synthetic Antioxidants Prevent the Degradation of Vitamin D3 Fortification in Canola Oil during Baking and In Vitro Digestion

    Get PDF
    Vitamin D insufficiency is widespread in the northern and partly equatorial hemisphere countries. Fortification of vitamin D in commonly consumed vegetable oils can prevent rickets in children, osteoporosis and bone fractures in adults. Avoiding the loss of vitamin D3 fortification in oils during cooking is beneficial for consumer’s health. The aim of this work was to investigate the stability of cholecalciferol (vitamin D3) fortification in canola oil during baking at 80 to 230°C for 10 to 40 min. The natural antioxidants (Îē-carotene and Îą-tocopherol) and the synthetic ones (butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ)) were used to prevent the degradation of vitamin D3. The kinetic degradation of vitamin D3, oxidative status of canola oil and the bioaccessibility in in vitro digestion were assessed. Vitamin D3 was relatively stable at 80 and 130°C for 10 to 40 min. High temperatures of 180 and 230°C caused the highest loss of vitamin D3 being up to 90%. Reaction rate of vitamin D3 degradation ranged from 2.01 to 6.80 × 10–2 sec–1. BHT and TBHQ had the highest antioxidant activity (> 50 %) to decrease the degradation of vitamin D3 at 230°C. The oxidative status (peroxide value, malondialdehyde content) of canola oil was improved after incorporating antioxidant agents. The vitamin D3 bioaccessibility was increased 1.5 fold after in vitro digestion. The consumption of 5 g brownie containing vitamin D3 100 Ξg/L and antioxidant agents 180 mg/L in 1 mL of canola oil would cover the daily intake

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļœāļĨāļœāļĨāļīāļ•āļ›āļĨāļēāļ—āļđāļ™āđˆāļēāļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ Skipjack (Katsuwonus pelamis) āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļ›āļĨāļēāđ€āļžāļ·āđˆāļ­āļœāļĨāļīāļ•āđ€āļ›āđ‡āļ™āļ­āļēāļŦāļēāļĢāļŠāļģāļŦāļĢāļąāļšāļŠāļąāļ•āļ§āđŒāđ€āļĨāļĩāđ‰āļĒāļ‡ Increasing Production Yield of Skipjack Tuna (Katsuwonus pelamis) During Pre-Cooking Process for Pet Food

    No full text
    āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ›āļĨāļēāļ—āļđāļ™āđˆāļēāļŠāļģāļŦāļĢāļąāļšāļŠāļąāļ•āļ§āđŒāđ€āļĨāļĩāđ‰āļĒāļ‡āļĄāļĩāļāļēāļĢāđāļ‚āđˆāļ‡āļ‚āļąāļ™āļ—āļĩāđˆāļŠāļđāļ‡ āļ‹āļķāđˆāļ‡āļāļēāļĢāļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āđ€āļ›āđ‡āļ™āļ›āļąāļˆāļˆāļąāļĒāļŦāļ™āļķāđˆāļ‡āđƒāļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļāļģāđ„āļĢāđƒāļŦāđ‰āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āđ€āļžāļīāđˆāļĄāļœāļĨāļœāļĨāļīāļ•āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļ›āļĨāļē āđ‚āļ”āļĒāđƒāļŠāđ‰āļ›āļĨāļēāļ—āļđāļ™āđˆāļēāļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒ Skipjack (Katsuwonas pelamis) āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āđ‚āļ”āļĒāđƒāļŠāđ‰āļŦāļĨāļąāļ DMAIC āļžāļšāļ§āđˆāļē 1) āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļĢāļ°āļšāļļāļ›āļąāļāļŦāļē (Defined Phase) āļ„āļ·āļ­ āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļ›āļĨāļēāđ€āļāļīāļ”āļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ›āļĨāļēāđ€āļāļīāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļāļģāļŦāļ™āļ” 2) āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ§āļąāļ”āļœāļĨ (Measure Phase) āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļ›āļĨāļēāđƒāļŠāđ‰āđ€āļ§āļĨāļēāļ™āļķāđˆāļ‡āđ€āļ‰āļĨāļĩāđˆāļĒ 47 āļ™āļēāļ—āļĩ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļœāļĨāļœāļĨāļīāļ•āđ€āļ—āđˆāļēāļāļąāļšāļĢāđ‰āļ­āļĒāļĨāļ° 86.02 Âą2.65 āđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļĄāļĩāļ„āđˆāļēāđ€āļ—āđˆāļēāļāļąāļšāļĢāđ‰āļ­āļĒāļĨāļ° 90 3) āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŦāļēāļŠāļēāđ€āļŦāļ•āļļāļ‚āļ­āļ‡āļ›āļąāļāļŦāļē (Analysis Phase) āđ‚āļ”āļĒāđƒāļŠāđ‰āđāļœāļ™āļœāļąāļ‡āđ€āļŦāļ•āļļāđāļĨāļ°āļœāļĨ (Cause and Effect Diagram) āļĄāļēāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļšāļ§āđˆāļēāļĄāļĩ 2 āļŠāļēāđ€āļŦāļ•āļļ āđ„āļ”āđ‰āđāļāđˆ āđ€āļ§āļĨāļēāđ„āļĨāđˆāļ­āļēāļāļēāļĻāļ‚āļ­āļ‡āļ•āļđāđ‰āļ™āļķāđˆāļ‡āđāļĨāļ°āđ€āļ§āļĨāļēāļ™āļķāđˆāļ‡āļ›āļĨāļēāļ—āļĩāđˆāļ™āļēāļ™āđ€āļāļīāļ™āđ„āļ› 4) āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āđāļāđ‰āđ„āļ‚ (Improved Phase) āļŠāļēāđ€āļŦāļ•āļļāļ—āļĩāđˆ 1 āđāļāđ‰āđ„āļ‚āđ‚āļ”āļĒāļāļģāļŦāļ™āļ”āđ€āļ§āļĨāļēāđ„āļĨāđˆāļ­āļēāļāļēāļĻāļ‚āļ­āļ‡āļ—āļļāļāļ•āļđāđ‰āđƒāļŦāđ‰āđ€āļ—āđˆāļēāļāļąāļ™ āļ„āļ·āļ­ 8 āļ™āļēāļ—āļĩ āļŠāļēāđ€āļŦāļ•āļļāļ—āļĩāđˆ 2 āđāļāđ‰āđ„āļ‚āđ‚āļ”āļĒāļāļēāļĢāļˆāļąāļ”āļ—āļģāļĄāļēāļ•āļĢāļāļēāļ™āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļ™āļķāđˆāļ‡ āļ‹āļķāđˆāļ‡āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āđ€āļ§āļĨāļēāđ€āļ‰āļĨāļĩāđˆāļĒāđƒāļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 47 āļ™āļēāļ—āļĩ āļĨāļ”āļĨāļ‡āđ€āļŦāļĨāļ·āļ­ 30 āļ™āļēāļ—āļĩ āđāļĨāļ° 5) āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ„āļ§āļšāļ„āļļāļĄāđāļĨāļ°āļ•āļīāļ”āļ•āļēāļĄāļœāļĨ (Control- Phase) āđ‚āļ”āļĒāļāļēāļĢāļ™āļģāļĄāļēāļ•āļĢāļāļēāļ™āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļ™āļķāđˆāļ‡āļ›āļĨāļēāđ„āļ›āđƒāļŠāđ‰āļ›āļāļīāļšāļąāļ•āļīāļ‡āļēāļ™āļˆāļĢāļīāļ‡ āļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļœāļĨāļœāļĨāļīāļ•āļˆāļēāļāđ€āļ”āļīāļĄāļĢāđ‰āļ­āļĒāļĨāļ° 86.02 Âą2.65 āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 89.83 Âą1.87 āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āļ”āđ‰āļēāļ™āļ§āļąāļ•āļ–āļļāļ”āļīāļšāđ„āļ›āđ„āļ”āđ‰ 208,539 āļšāļēāļ—āļ•āđˆāļ­āđ€āļ”āļ·āļ­āļ™ āļŦāļĢāļ·āļ­ 2,502,468 āļšāļēāļ—āļ•āđˆāļ­āļ›āļĩRecently, the canned tuna for pet food industry is highly competitive. Thus, cost reduction is a main way to increases the company's profitability. This research aims to increase the productivity of tuna during pre-cooking process. Skipjack tuna (Katsuwonas pelamis) was used in this experiment. Production yield was improved by DMAIC technique revealing the results as follows. 1) Defined Phase; The pre-cooking process of tuna caused weight loss. 2) Measure Phase; the time of pre-cooking process was an average 47 minutes which resulted in lowering tuna yield as 86.02 Âą2.65% from the improving expected outcome as 90%. 3) Analysis phase; using cause and effect diagram showed that there were 2 causes namely excessing time in exhausting process and pre-cooking. 4) Improved phase; the exhausting time was set up similarly at 8 minutes for all batches. In addition, standard time for pre-cooking process was established which can reduce the pre-cooking time from averagely 47 minutes to 30 minutes. and 5) Control and follow-up steps (Control-Phase); the pre-cooking time and exhausting time were applied to this work. The results showed that the productivity increased from 86.02 Âą2.65 % to 89.83 Âą1.87% resulted in reducing raw material costs 208,539 baht per month or 2,502,468 baht per year

    Abstracts from the 8th International Congress of the Asia Pacific Society of Infection Control (APSIC)

    Get PDF
    corecore