120 research outputs found

    Computation of microdosimetric distributions for small sites

    Get PDF
    Object of this study is the computation of microdosimetric functions for sites which are too small to permit experimental determination of the distributions by Rossi-counters. The calculations are performed on simulated tracks generated by Monte-Carlo techniques. The first part of the article deals with the computational procedure. The second part presents numerical results for protons of energies 0.5, 5, 20 MeV and for site diameters of 5, 10, 100 nm

    Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data

    Get PDF
    BACKGROUND: Chromosomal abnormalities have been associated with most human malignancies, with gains and losses on some genomic regions associated with particular entities. METHODS: Of the 15429 cases collected for the Progenetix molecular-cytogenetic database, 5918 malignant epithelial neoplasias analyzed by chromosomal Comparative Genomic Hybridization (CGH) were selected for further evaluation. For the 22 clinico-pathological entities with more than 50 cases, summary profiles for genomic imbalances were generated from case specific data and analyzed. RESULTS: With large variation in overall genomic instability, recurring genomic gains and losses were prominent. Most entities showed frequent gains involving 8q2, while gains on 20q, 1q, 3q, 5p, 7q and 17q were frequent in different entities. Loss "hot spots" included 3p, 4q, 13q, 17p and 18q among others. Related average imbalance patterns were found for clinically distinct entities, e.g. hepatocellular carcinomas (ca.) and ductal breast ca., as well as for histologically related entities (squamous cell ca. of different sites). CONCLUSION: Although considerable case-by-case variation of genomic profiles can be found by CGH in epithelial malignancies, a limited set of variously combined chromosomal imbalances may be typical for carcinogenesis. Focus on the respective regions should aid in target gene detection and pathway deduction

    Monte-Carlo simulation of primary stochastic effects induced at the cellular level in boron neutron capture therapy

    No full text
    A Monte Carlo code is developed to study the action of particles in Boron Neutron Capture Therapy (BNCT). Our aim is to calculate the probability of dissipating a lethal dose in cell nuclei. Cytoplasmic and nuclear membranes are considered as non-concentric ellipsoids. All geometrical parameters may be adjusted to fit actual configurations. The reactions 10B(n,γα)7Li and 14N(n,p)14C create heavy ions which slow down losing their energy. Their trajectories can be simulated taking into account path length straggling. The contribution of each reaction to the deposited dose in different cellular compartments can be studied and analysed for any distribution of 10B
    • …
    corecore