28 research outputs found

    Do Credit Associations Compete with Each Other in Japanese Regional Lending Markets?

    Get PDF
    This paper examines whether credit associations in Japanese regional lending markets compete on price now that Japanese financial authorities have replaced the convoy system of financial regulation with the principle of competition. Specifically, the effects of the market share of credit associations in regional markets on their lending rates are empirically investigated. Accordingly, we determined that credit associations compete with each other in regional lending markets by using two different proxies for the market share held by credit associations in a region. The first proxy was the credit associationsā€™ share of all deposits in a region and the second was the credit associationsā€™ share of all branch offices in a region. In addition, credit associations that face more intense competition from regional banks in regional markets were found to face more intense competition from other credit associations

    Tryptophan depletion results in tryptophan-to-phenylalanine substitutants

    Get PDF
    Activated T cells secrete interferon-Ī³, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1ā€“4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides ā€˜substitutantsā€™ to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity

    A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis

    Get PDF
    Background: Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. Results: We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopi

    Computational challenges in modeling gene regulatory events

    No full text
    Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating ā€œomicsā€ data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology

    ABPEPserver: a web application for documentation and analysis of substitutants

    Get PDF
    Abstract Background Cancer immunotherapy is implemented by identifying antigens that are presented on the cell surface of cancer cells and illicit T-cell response (Schumacher and Schreiber, Science 348:69ā€“74, 2015; Waldman et al., Nat Rev Immunol 20:651ā€“668, 2020; Zhang et al., Front Immunol 12:672,356, 2021b). Classical candidates of such antigens are the peptides resulting from genetic alterations and are named ā€œneoantigen" (Schumacher and Schreiber, Science 348:69ā€“74, 2015). Neoantigens have been widely catalogued across several human cancer types (Tan et al., Database (Oxford) 2020;2020b; Vigneron et al., Cancer Immun 13:15, 2013; Yi et al., iScience 24:103,107, 2021; Zhang et al., BMC Bioinformatics 22:40, 2021a). Recently, a new class of inducible antigens has been identified, namely Substitutants, that are produced as a result of aberrant protein translation (Pataskar et al., Nature 603:721ā€“727, 2022). Main Catalogues of Substitutant expression across human cancer types, their specificity and association to gene expression signatures remain elusive for the scientific community's access. As a solution, we present ABPEPserver, an online database and analytical platform that can visualize a large-scale tumour proteomics analysis of Substitutant expression across eight tumour types sourced from the CPTAC database (Edwards et al., J Proteome Res 14:2707ā€“2713, 2015). Functionally, ABPEPserver offers the analysis of gene-association signatures of Substitutant peptides, a comparison of enrichment between tumour and tumour-adjacent normal tissues, and a list of peptides that serve as candidates for immunotherapy design. ABPEPserver will significantly enhance the exploration of aberrant protein production in human cancer, as exemplified in a case study. Conclusion ABPEPserver is designed on an R SHINY platform to catalogue Substitutant peptides in human cancer. The application is available at https://rhpc.nki.nl/sites/shiny/ABPEP/ . The code is available under GNU General public license from GitHub ( https://github.com/jasminesmn/ABPEPserver )

    Boosting Antitumor Immunity with an Expanded Neoepitope Landscape

    Get PDF
    Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes

    FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development

    Get PDF
    Epithelial-to-mesenchymal transition (EMT) regulates both processes of organism development and changes in cell state causing disease. Here, the authors show that an E3 ubiquitin ligase, FBXO32, regulates EMT via CtBP1 and the transcriptional program, and also mediates cancer metastatic burden and neurogenesis
    corecore