11 research outputs found

    Emissions and topographic effects on column CO_2 (XCO_2) variations, with a focus on the Southern California Megacity

    Get PDF
    Within the California South Coast Air Basin (SoCAB), X_(CO)_2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. X_(CO)_2 measurements within the basin have seasonal variation compared to the ā€œbackgroundā€ due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin-background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 Ā± 1.2 ppm, Orbiting Carbon Observatory-2 (OCO-2) 2.4 Ā± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 Ā± 1.6 ppm (errors are 1Ļƒ). We further observe persistent significant differences (āˆ¼0.9 ppm) in X_(CO)_2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (Ā±1Ļƒ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (Ā±1Ļƒ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO_2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in X_(CO)_2 across the SoCAB as well

    Quantification of urban atmospheric boundary layer greenhouse gas dry mole fraction enhancements in the dormant season: Results from the Indianapolis Flux Experiment (INFLUX)

    Get PDF
    We assess the detectability of city emissions via a tower-based greenhouse gas (GHG) network, as part of the Indianapolis Flux (INFLUX) experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mole fraction measurements in Indianapolis, Indiana for 2011ā€“2013, we quantify spatial and temporal patterns in urban atmospheric GHG dry mole fractions. The platform for these measurements is twelve communications towers spread across the metropolitan region, ranging in height from 39 to 136 m above ground level, and instrumented with cavity ring-down spectrometers. Nine of the sites were deployed as of January 2013 and data from these sites are the focus of this paper. A background site, chosen such that it is on the predominantly upwind side of the city, is utilized to quantify enhancements caused by urban emissions. Afternoon averaged mole fractions are studied because this is the time of day during which the height of the boundary layer is most steady in time and the area that influences the tower measurements is likely to be largest. Additionally, atmospheric transport models have better performance in simulating the daytime convective boundary layer compared to the nighttime boundary layer. Averaged from January through April of 2013, the mean urban dormant-season enhancements range from 0.3 ppm CO2 at the site 24 km typically downwind of the edge of the city (Site 09) to 1.4 ppm at the site at the downwind edge of the city (Site 02) to 2.9 ppm at the downtown site (Site 03). When the wind is aligned such that the sites are downwind of the urban area, the enhancements are increased, to 1.6 ppm at Site 09, and 3.3 ppm at Site 02. Differences in sampling height affect the reported urban enhancement by up to 50%, but the overall spatial pattern remains similar. The time interval over which the afternoon data are averaged alters the calculated urban enhancement by an average of 0.4 ppm. The CO2 observations are compared to CO2 mole fractions simulated using a mesoscale atmospheric model and an emissions inventory for Indianapolis. The observed and modeled CO2 enhancements are highly correlated (r2 = 0.94), but the modeled enhancements prior to inversion average 53% of those measured at the towers. Following the inversion, the enhancements follow the observations closely, as expected. The CH4 urban enhancement ranges from 5 ppb at the site 10 km predominantly downwind of the city (Site 13) to 21 ppb at the site near the landfill (Site 10), and for CO ranges from 6 ppb at the site 24 km downwind of the edge of the city (Site 09) to 29 ppb at the downtown site (Site 03). Overall, these observations show that a dense network of urban GHG measurements yield a detectable urban signal, well-suited as input to an urban inversion system given appropriate attention to sampling time, sampling altitude and quantification of background conditions

    Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity

    Full text link
    Within the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the ā€œbackgroundā€ due primarily to dynamics, or the origins of air masses coming into the basin. We observe basinā€background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3Ā Ā±Ā 1.2Ā ppm, Orbiting Carbon Observatoryā€2 (OCOā€2) 2.4Ā Ā±Ā 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 Ā± 1.6 ppm (errors are 1Ļƒ). We further observe persistent significant differences (āˆ¼0.9Ā ppm) in XCO2 between two TCCON sites located only 9Ā km apart within the SoCAB. We estimate that 20% (Ā±1Ļƒ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (Ā±1Ļƒ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCO2 across the SoCAB as well.Plain Language SummaryCities persistently have elevated carbon dioxide (CO2) levels as compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one groundā€based) systems and vary with regional wind patterns throughout the year. In Pasadena, California, within the SoCAB, a significant fraction (about 25%) of variation in the columnā€averaged CO2 can be explained by differences in surface altitude. This is important to understand so that all variations in column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.Key PointsIn the SoCAB, 20ā€“36% of spatial variance in XCO2 is explained by topography on scales ā‰²10Ā kmIn Pasadena, XCO2 is enhanced by 2.3Ā Ā±Ā 1.2 (1Ļƒ) ppm above background levels, at 1300 (UTC 8) with seasonal variationThe SoCAB XCO2 enhancement is in agreement for 3 different observation sets (TCCON, GOSAT, and OCOā€2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/1/jgrd53887.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/2/jgrd53887_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/3/jgrd53887-sup-0001-supinfo.pd

    Los Angeles megacity: a high-resolution landā€“atmosphere modelling system for urban CO_2 emissions

    Get PDF
    Megacities are major sources of anthropogenic fossil fuel CO_2 (FFCO_2) emissions. The spatial extents of these large urban systems cover areas of 10000 km^2 or more with complex topography and changing landscapes. We present a high-resolution landā€“atmosphere modelling system for urban CO_2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO_2 emission product, Hestia-LA, to simulate atmospheric CO_2 concentrations across the LA megacity at spatial resolutions as fine as ā€‰āˆ¼ā€‰1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (Mayā€“June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO_2 emission products to evaluate the impact of the spatial resolution of the CO_2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO_2 concentrations. We find that high spatial resolution in the fossil fuel CO_2 emissions is more important than in the atmospheric model to capture CO_2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO_2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO_2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO_2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO_2 emissions monitoring in the LA megacity requires FFCO_2 emissions modelling with ā€‰āˆ¼ā€‰1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates

    Optimizing the Spatial Resolution for Urban CO2 Flux Studies Using the Shannon Entropy

    No full text
    The ā€˜Hestia Projectā€™ uses a bottom-up approach to quantify fossil fuel CO2 (FFCO2) emissions spatially at the building/street level and temporally at the hourly level. Hestia FFCO2 emissions are provided in the form of a group of sector-specific vector layers with point, line, and polygon sources to support carbon cycle science and climate policy. Application to carbon cycle science, in particular, requires regular gridded data in order to link surface carbon fluxes to atmospheric transport models. However, the heterogeneity and complexity of FFCO2 sources within regular grids is sensitive to spatial resolution. From the perspective of a data provider, we need to find a balance between resolution and data volume so that the gridded data product retains the maximum amount of information content while maintaining an efficient data volume. The Shannon entropy determines the minimum bits that are needed to encode an information source and can serve as a metric for the effective information content. In this paper, we present an analysis of the Shannon entropy of gridded FFCO2 emissions with varying resolutions in four Hestia study areas, and find: (1) the Shannon entropy increases with smaller grid resolution until it reaches a maximum value (the max-entropy resolution); (2) total emissions (the sum of several sector-specific emission fields) show a finer max-entropy resolution than each of the sector-specific fields; (3) the residential emissions show a finer max-entropy resolution than the commercial emissions; (4) the max-entropy resolution of the onroad emissions grid is closely correlated to the density of the road network. These findings suggest that the Shannon entropy can detect the information effectiveness of the spatial resolution of gridded FFCO2 emissions. Hence, the resolution-entropy relationship can be used to assist in determining an appropriate spatial resolution for urban CO2 flux studies. We conclude that the optimal spatial resolution for providing Hestia total FFCO2 emissions products is centered around 100 m, at which the FFCO2 emissions data can not only fully meet the requirement of urban flux integration, but also be effectively used in understanding the relationships between FFCO2 emissions and various social-economic variables at the U.S. census block group level

    Hourly, road segment-specific fossil fuel CO2 emissions for 2012 in the Los Angeles Megacity, link to ESRI shapefile

    No full text
    We quantify hourly on-road fossil fuel carbon dioxide (FFCO2) emissions at the road segment level for the Los Angeles (LA) megacity based on observed traffic data, and characterize emission patterns across space and time. We define three different metrics to characterize FFCO2 emissions for the three road classes, and identify emissions hotspots in space and time

    Joint inverse estimation of fossil fuel and biogenic CO2 fluxes in an urban environment: An observing system simulation experiment to assess the impact of multiple uncertainties

    No full text
    The Indianapolis Flux Experiment aims to utilize a variety of atmospheric measurements and a high-resolution inversion system to estimate the temporal and spatial variation of anthropogenic greenhouse gas emissions from an urban environment. We present a Bayesian inversion system solving for fossil fuel and biogenic CO2 fluxes over the city of Indianapolis, IN. Both components were described at 1 km resolution to represent point sources and fine-scale structures such as highways in the a priori fluxes. With a series of Observing System Simulation Experiments, we evaluate the sensitivity of inverse flux estimates to various measurement deployment strategies and errors. We also test the impacts of flux error structures, biogenic CO2 fluxes and atmospheric transport errors on estimating fossil fuel CO2 emissions and their uncertainties. The results indicate that high-accuracy and high-precision measurements produce significant improvement in fossil fuel CO2 flux estimates. Systematic measurement errors of 1 ppm produce significantly biased inverse solutions, degrading the accuracy of retrieved emissions by about 1 'Ī¼'mol mā€“2 sā€“1 compared to the spatially averaged anthropogenic CO2 emissions of 5 'Ī¼'mol mā€“2 sā€“1. The presence of biogenic CO2 fluxes (similar magnitude to the anthropogenic fluxes) limits our ability to correct for random and systematic emission errors. However, assimilating continuous fossil fuel CO2 measurements with 1 ppm random error in addition to total CO2 measurements can partially compensate for the interference from biogenic CO2 fluxes. Moreover, systematic and random flux errors can be further reduced by reducing model-data mismatch errors caused by atmospheric transport uncertainty. Finally, the precision of the inverse flux estimate is highly sensitive to the correlation length scale in the prior emission errors. This work suggests that improved fossil fuel CO2 measurement technology, and better understanding of both prior flux and atmospheric transport errors are essential to improve the accuracy and precision of high-resolution urban CO2 flux estimates

    Carbon monoxide isotopic measurements in Indianapolis constrain urban source isotopic signatures and support mobile fossil fuel emissions as the dominant wintertime CO source

    No full text
    We present measurements of CO mole fraction and CO stable isotopes (Ī“13CO and Ī“C18O) in air during the winters of 2013ā€“14 and 2014ā€“15 at tall tower sampling sites in and around Indianapolis, USA. A tower located upwind of the city was used to quantitatively remove the background CO signal, allowing for the first unambiguous isotopic characterization of the urban CO source and yielding 13CO of ā€“27.7 Ā± 0.5ā€° VPDB and C18O of 17.7 Ā± 1.1ā€° VSMOW for this source. We use the tower isotope measurements, results from a limited traffic study, as well as atmospheric reaction rates to examine contributions from different sources to the Indianapolis CO budget. Our results are consistent with earlier findings that traffic emissions are the dominant source, suggesting a contribution of 96% or more to the overall Indianapolis wintertime CO emissions. Our results are also consistent with the hypothesis that emissions from a small fraction of vehicles without functional catalytic systems dominate the Indianapolis CO budget
    corecore