873 research outputs found

    Qualitative and Quantitative Detection of Chlamydophila pneumoniae DNA in Cerebrospinal Fluid from Multiple Sclerosis Patients and Controls

    Get PDF
    A standardized molecular test for the detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid (CSF) would assist the further assessment of the association of C. pneumoniae with multiple sclerosis (MS). We developed and validated a qualitative colorimetric microtiter plate-based PCR assay (PCR-EIA) and a real-time quantitative PCR assay (TaqMan) for detection of C. pneumoniae DNA in CSF specimens from MS patients and controls. Compared to a touchdown nested-PCR assay, the sensitivity, specificity, and concordance of the PCR-EIA assay were 88.5%, 93.2%, and 90.5%, respectively, on a total of 137 CSF specimens. PCR-EIA presented a significantly higher sensitivity in MS patients (p = 0.008) and a higher specificity in other neurological diseases (p = 0.018). Test reproducibility of the PCR-EIA assay was statistically related to the volumes of extract DNA included in the test (p = 0.033); a high volume, which was equivalent to 100 µl of CSF per reaction, yielded a concordance of 96.8% between two medical technologists running the test at different times. The TaqMan quantitative PCR assay detected 26 of 63 (41.3%) of positive CSF specimens that tested positive by both PCR-EIA and nested-PCR qualitative assays. None of the CSF specimens that were negative by the two qualitative PCR methods were detected by the TaqMan quantitative PCR. The PCR-EIA assay detected a minimum of 25 copies/ml C. pneumoniae DNA in plasmid-spiked CSF, which was at least 10 times more sensitive than TaqMan. These data indicated that the PCR-EIA assay possessed a sensitivity that was equal to the nested-PCR procedures for the detection of C. pneumoniae DNA in CSF. The TaqMan system may not be sensitive enough for diagnostic purposes due to the low C. pneumoniae copies existing in the majority of CSF specimens from MS patients

    Axial Vector Current Matrix Elements and QCD Sum Rules

    Full text link
    The matrix element of the isoscalar axial vector current, uˉγμγ5u+dˉγμγ5d\bar{u}\gamma_\mu\gamma_5u + \bar{d}\gamma_\mu\gamma_5d , between nucleon states is computed using the external field QCD sum rule method. The external field induced correlator, , is calculated from the spectrum of the isoscalar axial vector meson states. Since it is difficult to ascertain, from QCD sum rule for hyperons, the accuracy of validity of flavour SU(3) symmetry in hyperon decays when strange quark mass is taken into account, we rely on the empirical validity of Cabbibo theory to dertermine the matrix element uˉγμγ5u+dˉγμγ5d2sˉγμγ5s\bar{u}\gamma_{\mu}\gamma_5 u + \bar{d}\gamma_{\mu}\gamma_5 d - 2 \bar{s}\gamma_{\mu}\gamma_5 s between nucleon states. Combining with our calculation of uˉγμγ5u+dˉγμγ5d\bar{u}\gamma_{\mu}\gamma_5 u + \bar{d}\gamma_{\mu}\gamma_5 d and the well known nucleon β\beta-decay constant allows us to determine <p,s4/9uˉγμγ5u+1/9dˉγμγ5d+1/9sˉγμγ5sp,s>< p,s| {4/9}\bar{u}\gamma_{\mu}\gamma_5 u + {1/9}\bar{d}\gamma_{\mu}\gamma_5 d + {1/9}\bar{s}\gamma_{\mu}\gamma_5 s |p, s> occuring in the Bjorken sum rule. The result is in reasonable agreement with experiment. We also discuss the role of the anomaly in maintaining flavour symmetry and validity of OZI rule.Comment: 8 pages, 4 figures, revtex

    Spin splitting and Kondo effect in quantum dots coupled to noncollinear ferromagnetic leads

    Full text link
    We study the Kondo effect in a quantum dot coupled to two noncollinear ferromagnetic leads. First, we study the spin splitting δϵ=ϵϵ\delta\epsilon=\epsilon_{\downarrow}-\epsilon_{\uparrow} of an energy level in the quantum dot by tunnel couplings to the ferromagnetic leads, using the Poor man's scaling method. The spin splitting takes place in an intermediate direction between magnetic moments in the two leads. δϵpcos2(θ/2)+v2sin2(θ/2)\delta\epsilon \propto p\sqrt{\cos^2(\theta/2)+v^2\sin^2(\theta/2)}, where pp is the spin polarization in the leads, θ\theta is the angle between the magnetic moments, and vv is an asymmetric factor of tunnel barriers (1<v<1-1<v<1). Hence the spin splitting is always maximal in the parallel alignment of two ferromagnets (θ=0\theta=0) and minimal in the antiparallel alignment (θ=π\theta=\pi). Second, we calculate the Kondo temperature TKT_{\mathrm{K}}. The scaling calculation yields an analytical expression of TKT_{\mathrm{K}} as a function of θ\theta and pp, TK(θ,p)T_{\mathrm{K}}(\theta, p), when δϵTK\delta\epsilon \ll T_{\mathrm{K}}. TK(θ,p)T_{\mathrm{K}}(\theta, p) is a decreasing function with respect to pcos2(θ/2)+v2sin2(θ/2)p\sqrt{\cos^2(\theta/2)+v^2\sin^2(\theta/2)}. When δϵ\delta\epsilon is relevant, we evaluate TK(δϵ,θ,p)T_{\mathrm{K}}(\delta\epsilon, \theta, p) using the slave-boson mean-field theory. The Kondo resonance is split into two by finite δϵ\delta\epsilon, which results in the spin accumulation in the quantum dot and suppression of the Kondo effect.Comment: 11 pages, 8 figures, revised versio

    Modeling and Representation of Geometric Tolerances Information in Integrated Measurement Processes

    Get PDF
    Modeling and representation of geometric tolerances information across an enterprise is viable due to the advances in Internet technologies and increasing integration requirements from industry. In Integrated Measurement Processes (IMP), geometric tolerances data model must support different models from several well-defined standards: including ASME Y14.5M-1994, STEP, DMIS, and others. In this paper, we propose a layered conformance level geometric tolerances representation model. This model uses the widely applied ASME Y14.5M-1994 as its foundation layer by abstracting most information from this standard. The additional geometric tolerances information defined by DMIS and STEP is incorporated into this model to form corresponding conformance layers that support IMP. Thus, different application domains in an enterprise can use this data model to exchange product information. This model is further transformed with XML Schema that can be used to generate XML instance file to satisfy geometric tolerances representation requirements in IMP

    Thermoelectric phenomena in a quantum dot asymmetrically coupled to external leads

    Full text link
    We study thermoelectric phenomena in a system consisting of strongly correlated quantum dot coupled to external leads in the Kondo regime. We calculate linear and nonlinear electrical and thermal conductance and thermopower of the quantum dot and discuss the role of asymmetry in the couplings to external electrodes. In the linear regime electrical and thermal conductances are modified, while thermopower remains unchanged. In the nonlinear regime the Kondo resonance in differential conductance develops at non-zero source-drain voltage, which has important consequences on thermoelectric properties of the system and the thermopower starts to depend on the asymmetry. We also discuss Wiedemann-Franz relation, thermoelectric figure of merit and validity of the Mott formula for thermopower.Comment: 6 pages, 7 figure

    Evolutionary Algorithm for the Placement of Fluid Power Valves on a Valve Stand

    Get PDF
    The choice of placement of fluid power valves on a valve stand and routing by pipes has an impact on operational costs. Choosing the right placement that provides optimum routing configuration or determining the optimum routing for a chosen placement are both computationally hard problems. An evolutionary algorithm (EA), to minimize operational costs while optimizing placement and routing of valves, is developed here. The best practices in the industry are abstracted and implemented in the EA. In this paper, the algorithm and its performance for examples with varying complexities are presented. Our results meet or exceed experienced designers’ solutions

    Evolutionary Algorithm for the Placement of Fluid Power Valves on a Valve Stand

    Get PDF
    The choice of placement of fluid power valves on a valve stand and routing by pipes has an impact on operational costs. Choosing the right placement that provides optimum routing configuration or determining the optimum routing for a chosen placement are both computationally hard problems. An evolutionary algorithm (EA), to minimize operational costs while optimizing placement and routing of valves, is developed here. The best practices in the industry are abstracted and implemented in the EA. In this paper, the algorithm and its performance for examples with varying complexities are presented. Our results meet or exceed experienced designers’ solutions
    corecore