35 research outputs found

    Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs

    Get PDF
    Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage

    Surfactant protein D modulates HIV infection of both T-cells and dendritic cells

    Get PDF
    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo

    Characterisation of Innate Fungal Recognition in the Lung

    Get PDF
    The innate recognition of fungi by leukocytes is mediated by pattern recognition receptors (PRR), such as Dectin-1, and is thought to occur at the cell surface triggering intracellular signalling cascades which lead to the induction of protective host responses. In the lung, this recognition is aided by surfactant which also serves to maintain the balance between inflammation and pulmonary function, although the underlying mechanisms are unknown. Here we have explored pulmonary innate recognition of a variety of fungal particles, including zymosan, Candida albicans and Aspergillus fumigatus, and demonstrate that opsonisation with surfactant components can limit inflammation by reducing host-cell fungal interactions. However, we found that this opsonisation does not contribute directly to innate fungal recognition and that this process is mediated through non-opsonic PRRs, including Dectin-1. Moreover, we found that pulmonary inflammatory responses to resting Aspergillus conidia were initiated by these PRRs in acidified phagolysosomes, following the uptake of fungal particles by leukocytes. Our data therefore provides crucial new insights into the mechanisms by which surfactant can maintain pulmonary function in the face of microbial challenge, and defines the phagolysosome as a novel intracellular compartment involved in the innate sensing of extracellular pathogens in the lung

    Fully automated attractor analysis of cyanobacteria models

    Full text link
    © 2018 IEEE. Complex dynamics arising in biological systems can be characterised by various kinds of attractors. To that end, the task of determining attractors becomes important in modern systems analysis. Biological systems are typically formalised as highly parametrised continuous-time ODE models. Such models can be abstracted in the form of parametrised graphs. In such abstractions, attractors are observed in the form of terminal strongly connected components (tSCCs). In this paper, we demonstrate a novel method for detecting tSCCs in parametrised graphs on several models of cyanobacteria taken from the domain-specific online platform e-cyanobacterium.org

    Point of Care Quantitative Assessment of Muscle Health in Older Individuals: An Investigation of Quantitative Muscle Ultrasound and Electrical Impedance Myography Techniques

    No full text
    Background: Muscle health is recognized for its critical role in the functionality and well-being of older adults. Readily accessible, reliable, and inexpensive methods of measuring muscle health are needed to advance research and clinical care. Methods: In this prospective, blinded study, 27 patients underwent quantitative muscle ultrasound (QMUS), standard electrical impedance myography (sEIM), and handheld electrical impedance myography (hEIM) of the anterior thigh musculature by two independent examiners. Subjects also had dual-energy X-ray absorptiometry (DEXA) scans and standardized tests of physical function and strength. Data were analyzed for intra- and inter-rater reliability, along with correlations with DEXA and physical measures. Results: Measures of intra- and inter-rater reliability were excellent (>0.90) for all QMUS, sEIM, and hEIM parameters except intra-rater reliability of rectus femoris echointensity (0.87⁻0.89). There were moderate, inverse correlations between QMUS, sEIM, and hEIM parameters and measures of knee extensor strength. Moderate to strong correlations (0.57⁻0.81) were noted between investigational measures and DEXA-measured fat mass. Conclusions: QMUS, sEIM and hEIM were highly reliable in a controlled, same-day testing protocol. Multiple correlations with measures of strength and body composition were noted for each method. Point-of-care technologies may provide an alternative means of measuring health
    corecore