38 research outputs found

    Optimized protocol for the detection of multifunctional epitope-specific CD4+ T cells combining MHC-II tetramer and intracellular cytokine staining technologies

    Get PDF
    Analysis of multifunctional CD4+ T cells is fundamental for characterizing the immune responses to vaccination or infection. Major histocompatibility complex (MHC)/peptide tetramers represent a powerful technology for the detection of antigen-specific T cells by specific binding to their T-cell receptor, and their combination with functional assays is fundamental for characterizing the antigen-specific immune response. Here we optimized a protocol for the detection of multiple intracellular cytokines within epitope-specific CD4+ T cells identified by the MHC class II tetramer technology. The optimal procedure for assessing the functional activity of tetramer-binding CD4+ T cells was based on the simultaneous intracellular staining with both MHC tetramers and cytokine-specific antibodies upon in vitro restimulation of cells with the vaccine antigen. The protocol was selected among procedures that differently combine the steps of cellular restimulation and tetramer staining with intracellular cytokine labeling. This method can be applied to better understand the complex functional profile of CD4+ T-cell responses upon vaccination or infection

    Streptococcus pyogenes Φ1207.3 Is a Temperate Bacteriophage Carrying the Macrolide Resistance Gene Pair mef(A)-msr(D) and Capable of Lysogenizing Different Streptococci

    Get PDF
    Streptococcus pyogenes prophage phi 1207.3 (formerly Tn1207.3) carries the mef(A)-msr(D) resistance genes, responsible for type M macrolide resistance. To investigate if phi 1207.3 is a functional bacteriophage, we transferred the element from the original S. pyogenes host in a prophage-free and competence-deficient S. pneumoniae strain. Pneumococcal cultures of the phi 1207.3-carrying lysogen were treated with mitomycin C to assess if phi 1207.3 enters the lytic cycle. Mitomycin C induced a limited phage burst and a growth impairment, resulting in early entrance into the stationary phase. To determine if phi 1207.3 is able to produce mature phage particles, we prepared concentrated supernatants recovered from a mitomycin C-induced pneumococcal culture by sequential centrifugation and ultracentrifugation steps. Negative-staining transmission electron microscopy (TEM) of supernatants revealed the presence of phage particles with an icosahedral, electron-dense capsid and a long, noncontractile tail, typical of a siphovirus. Quantification of phi 1207.3 was performed by quantitative PCR (qPCR) and semiquantitatively by TEM. PCR quantified 3.34 x 10(4) and 6.06 x 10(4) excised forms of phage genome per milliliter of supernatant obtained from the untreated and mitomycin C-treated cultures, respectively. By TEM, we estimated 3.02 x 10(3) and 7.68 x 10(3) phage particles per milliliter of supernatant. The phage preparations of phi 1207.3 infected and lysogenized pneumococcal recipient strains at a frequency of 7.5 x 10(-6) lysogens/recipient but did not show sufficient lytic activity to form plaques. Phage lysogenization efficiently occurred after 30 min of contact of the phages with the recipient cells and required a minimum of 10(3) phage particles. © 2023 Santoro et al

    Monitoring Anti-PEG Antibodies Level upon Repeated Lipid Nanoparticle-Based COVID-19 Vaccine Administration

    Get PDF
    PEGylated lipids are one of the four constituents of lipid nanoparticle mRNA COVID-19 vaccines. Therefore, various concerns have been raised on the generation of anti-PEG antibodies and their potential role in inducing hypersensitivity reactions following vaccination or in reducing vaccine efficacy due to anti-carrier immunity. Here, we assess the prevalence of anti-PEG antibodies, in a cohort of vaccinated individuals, and give an overview of their time evolution after repeated vaccine administrations. Results indicate that, in our cohort, the presence of PEG in the formulation did not influence the level of anti-Spike antibodies generated upon vaccination and was not related to any reported, serious adverse effects. The time-course analysis of anti-PEG IgG showed no significant booster effect after each dose, whereas for IgM a significant increase in antibody levels was detected after the first and third dose. Data suggest that the presence of PEG in the formulation does not affect safety or efficacy of lipid-nanoparticle-based COVID-19 vaccines

    Novel Approach for Evaluation of Bacteroides fragilis Protective Role against Bartonella henselae Liver Damage in Immunocompromised Murine Model

    Get PDF
    Bartonella henselae is a gram-negative facultative intracellular bacterium and is the causative agent of cat-scratch disease. Our previous data have established that Bacteroides fragilis colonization is able to prevent B. henselae damages through the polysaccharide A (PSA) in an experimental murine model. In order to determine whether the PSA is essential for the protection against pathogenic effects of B. henselae in immunocompromised hosts, SCID mice were co-infected with B. fragilis wild type or its mutant B. fragilis 1PSA and the effects of infection on murine tissues have been observed by High-Frequency Ultrasound (HFUS), histopathological examination, and Transmission Electron Microscopy (TEM). For the first time, echostructure, hepatic lobes length, vascular alterations, and indirect signs of hepatic dysfunctions, routinely used as signs of disease in humans, have been analyzed in an immunocompromised murine model. Our findings showed echostructural alterations in all infected mice compared with the Phosphate Buffer Solution (PBS) control group; further, those infected with B. henselae and co-infected with B. henselae/B. fragilis 1PSA presented the major echostructural alterations. Half of the mice infected with B. henselae and all those co-infected with B. henselae/B. fragilis 1PSA have showed an altered hepatic echogenicity compared with the renal cortex. The echogenicity score of co-infected mice with B. henselae/B. fragilis 1PSA differed significantly compared with the PBS control group (p < 0.05). Moreover the inflammation score of the histopathological evaluation was fairly concordant with ultrasound findings. Ultrastructural analysis performed by TEM revealed no significant alterations in liver samples of SCID mice infected with B. fragilis wild type while those infected with B. fragilis 1PSA showed the presence of collagen around the main vessels compared with the PBS control group. The liver samples of mice infected with B. henselae showed macro-areas rich in collagen, stellate cells, and histiocytic cells. Interestingly, our data demonstrated that immunocompromised SCID mice infected with B. henselaeand co-infected with B. henselae/B. fragilis ΔPSA showed the most severe morpho-structural liver damage. In addition, these results suggests that the HFUS together with histopathological evaluation could be considered good imaging approach to evaluate hepatic alterations

    Trajectory of Spike-Specific B Cells Elicited by Two Doses of BNT162b2 mRNA Vaccine

    Get PDF
    : The mRNA vaccines for SARS-CoV-2 have demonstrated efficacy and immunogenicity in the real-world setting. However, most of the research on vaccine immunogenicity has been centered on characterizing the antibody response, with limited exploration into the persistence of spike-specific memory B cells. Here we monitored the durability of the memory B cell response up to 9 months post-vaccination, and characterized the trajectory of spike-specific B cell phenotypes in healthy individuals who received two doses of the BNT162b2 vaccine. To profile the spike-specific B cell response, we applied the tSNE and Cytotree automated approaches. Spike-specific IgA+ and IgG+ plasmablasts and IgA+ activated cells were observed 7 days after the second dose and disappeared 3 months later, while subsets of spike-specific IgG+ resting memory B cells became predominant 9 months after vaccination, and they were capable of differentiating into spike-specific IgG secreting cells when restimulated in vitro. Other subsets of spike-specific B cells, such as IgM+ or unswitched IgM+IgD+ or IgG+ double negative/atypical cells, were also elicited by the BNT162b2 vaccine and persisted up to month 9. The analysis of circulating spike-specific IgG, IgA, and IgM was in line with the plasmablasts observed. The longitudinal analysis of the antigen-specific B cell response elicited by mRNA-based vaccines provides valuable insights into our understanding of the immunogenicity of this novel vaccine platform destined for future widespread use, and it can help in guiding future decisions and vaccination schedules

    B cell response after SARS-CoV-2 mRNA vaccination in people living with HIV

    Get PDF
    Background: Limited longitudinal data are available on immune response to mRNA SARS-CoV-2 vaccination in people living with HIV (PLWHIV); therefore, new evidence on induction and persistence of spike-specific antibodies and B cells is needed. Methods: In this pilot study we investigated the spike-specific humoral and B cell responses up to six months after vaccination with two doses of mRNA vaccines in 84 PLWHIV under antiretroviral therapy compared to 79 healthy controls (HCs). Results: Spike-specific IgG persisted six months in PLWHIV with no significant differences compared to HCs, even though a significantly lower IgG response was observed in patients with CD4+ T cells &lt; 350/mmc. The frequency of subjects with antibodies capable of inhibiting ACE2/RBD binding was comparable between PLWHIV and HCs a month after the second vaccine dose, then a higher drop was observed in PLWHIV. A comparable percentage of spike-specific memory B cells was observed at month six in PLWHIV and HCs. However, PLWHIV showed a higher frequency of spike-specific IgD- CD27- double-negative memory B cells and a significantly lower rate of IgD- CD27+ Ig-switched memory B cells compared to HCs, suggesting a reduced functionality of the antigen-specific memory B population. Conclusions: The mRNA vaccination against SARS-CoV-2 elicits humoral and B cell responses quantitatively similar between PLWHIV and HCs, but there are important differences in terms of antibody functionality and phenotypes of memory B cells, reinforcing the notion that tailored vaccination policies should be considered for these patients

    Seroprevalence of Bartonella henselae in patients awaiting heart transplant in Southern Italy

    Get PDF
    Background Bartonella henselae is the etiologic agent of cat-scratch disease. B. henselae infections are responsible for a widening spectrum of human diseases, although often symptomless, ranging from self-limited to life-threatening and show different courses and organ involvement due to the balance between host and pathogen. The role of the host immune response to B. henselae is critical in preventing progression to systemic disease. Indeed in immunocompromised patients, such as solid organ transplant patients, B. henselae results in severe disseminated disease and pathologic vasoproliferation. The purpose of this study was to determine the seroprevalence of B. henselae in patients awaiting heart transplant compared to healthy individuals enrolled in the Regional Reference Laboratory of Transplant Immunology of Second University of Naples. Methods Serum samples of 38 patients awaiting heart transplant in comparison to 50 healthy donors were examined using immunfluorescence assay. Results We found a B. henselae significant antibody positivity rate of 21% in patients awaiting heart transplant ( p = 0.002). There was a positive rate of 8% ( p > 0.05) for immunoglobulin (Ig)M and a significant value of 13% ( p = 0.02) for IgG, whereas controls were negative both for IgM and IgG antibodies against B. henselae . The differences in comorbidity between cases and controls were statistically different (1.41 ± 0.96 vs 0.42 ± 0.32; p = 0.001). Conclusions Although this study was conducted in a small number of patients, we suggest that the identification of these bacteria should be included as a routine screening analysis in pretransplant patients

    Heterologous Prime-Boost Combinations Highlight the Crucial Role of Adjuvant in Priming the Immune System

    Get PDF
    The induction and modulation of the immune response to vaccination can be rationally designed by combining different vaccine formulations for priming and boosting. Here, we investigated the impact of heterologous prime-boost approaches on the vaccine-specific cellular and humoral responses specific for a mycobacterial vaccine antigen. C57BL/6 mice were primed with the chimeric vaccine antigen H56 administered alone or with the CAF01 adjuvant, and boosted with H56 alone, or combined with CAF01 or with the squalene-based oil-in-water emulsion adjuvant (o/w squalene). A strong secondary H56-specific CD4+ T cell response was recalled by all the booster vaccine formulations when mice had been primed with H56 and CAF01, but not with H56 alone. The polyfunctional nature of T helper cells was analyzed and visualized with the multidimensional flow cytometry FlowSOM software, implemented as a package of the R environment. A similar cytokine profile was detected in groups primed with H56 + CAF01 and boosted with or without adjuvant, except for some clusters of cells expressing high level of IL-17 together with TNF-α, IL-2, and IFN-γ, that were significantly upregulated only in groups boosted with the adjuvants. On the contrary, the comparison between groups primed with or without the adjuvant showed a completely different clusterization of cells, strengthening the impact of the formulation used for primary immunization on the profiling of responding cells. The presence of the CAF01 adjuvant in the priming formulation deeply affected also the secondary humoral response, especially in groups boosted with H56 alone or o/w squalene. In conclusion, the presence of CAF01 adjuvant in the primary immunization is crucial for promoting primary T and B cell responses that can be efficiently reactivated by booster immunization also performed with antigen alone

    Short or Long Interval between Priming and Boosting: Does It Impact on the Vaccine Immunogenicity?

    Get PDF
    Characterizing the impact of the vaccination schedule on the induction of B and T cell immune responses is critical for improving vaccine immunogenicity. Here we compare the effect of a short (4 weeks) or a long (18 weeks) interval between priming and boosting in mice, using a model vaccine formulation based on the chimeric tuberculosis vaccine antigen H56 combined with alum. While no significant difference was observed in serum antigen-specific IgG response and the induction of antigen-specific T follicular helper cells into draining lymph nodes after the two immunization schedules, a longer interval between priming and boosting elicited a higher number of germinal center-B cells and H56-specific antibody-secreting cells and modulated the effector function of reactivated CD4+ T cells. These data show that the scheduling of the booster immunization could affect the immune response elicited by vaccination modulating and improving the immunogenicity of the vaccine. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Short or Long Interval between Priming and Boosting: Does It Impact on the Vaccine Immunogenicity?

    No full text
    Characterizing the impact of the vaccination schedule on the induction of B and T cell immune responses is critical for improving vaccine immunogenicity. Here we compare the effect of a short (4 weeks) or a long (18 weeks) interval between priming and boosting in mice, using a model vaccine formulation based on the chimeric tuberculosis vaccine antigen H56 combined with alum. While no significant difference was observed in serum antigen-specific IgG response and the induction of antigen-specific T follicular helper cells into draining lymph nodes after the two immunization schedules, a longer interval between priming and boosting elicited a higher number of germinal center-B cells and H56-specific antibody-secreting cells and modulated the effector function of reactivated CD4+ T cells. These data show that the scheduling of the booster immunization could affect the immune response elicited by vaccination modulating and improving the immunogenicity of the vaccine
    corecore