7,920 research outputs found

    Recognizing myofascial pelvic pain in the female patient with chronic pelvic pain.

    Get PDF
    Myofascial pelvic pain (MFPP) is a major component of chronic pelvic pain (CPP) and often is not properly identified by health care providers. The hallmark diagnostic indicator of MFPP is myofascial trigger points in the pelvic floor musculature that refer pain to adjacent sites. Effective treatments are available to reduce MFPP, including myofascial trigger point release, biofeedback, and electrical stimulation. An interdisciplinary team is essential for identifying and successfully treating MFPP

    Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

    Full text link
    Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio
    • …
    corecore